

PIC16C6X

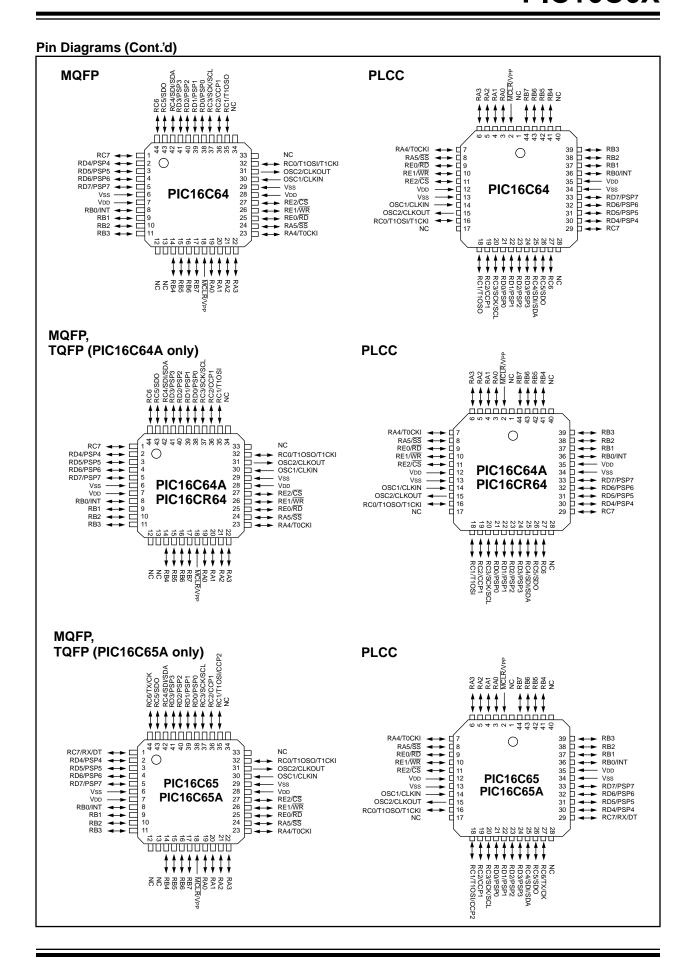
8-Bit CMOS Microcontrollers

Devices included in this data sheet:

- PIC16C61
- PIC16C62
- PIC16C62A
- PIC16CR62
- PIC16C63
- PIC16C64
- PIC16C64A
- PIC16CR64
- PIC16C65
- PIC16C65A

PIC16C6X Microcontroller Core Features:

- High performance RISC CPU
- Only 35 single word instructions to learn
- All single cycle instructions (200 ns) except for program branches which are two-cycle
- Operating speed: DC 20 MHz clock input DC - 200 ns instruction cycle
- · Interrupt capability
- · Eight level deep hardware stack
- · Direct, indirect, and relative addressing modes
- Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- · Programmable code-protection
- · Power saving SLEEP mode


- · Selectable oscillator options
- Low-power, high-speed CMOS EPROM/ROM technology
- · Fully static design
- Wide operating voltage range: 2.5V to 6.0V
- Commercial, Industrial, and Automotive temperature ranges
- Low-power consumption:
 - < 2 mA @ 5V. 4 MHz
 - 15 μA typical @ 3V, 32 kHz
 - < 1 μA typical standby current

PIC16C6X Peripheral Features:

- Timer0: 8-bit timer/counter with prescaler
- Timer1: 16-bit timer/counter with prescaler. TMR1 can be incremented during sleep via external crystal/clock
- Timer2: 8-bit timer/counter with period register, prescaler and postscaler
- Capture/Compare/PWM module(s)
- Capture is 16-bit, max resolution 12.5 ns, Compare is 16-bit, max resolution 200 ns, max. PWM resolution is 10-bit.
- Synchronous Serial Port (SSP) with SPI and I²C[™]
- Universal Synchronous Asynchronous Receiver Transmitter (USART/SCI)
- Parallel Slave Port (PSP) 8-bits wide, with external RD, WR and CS controls
- Brown-out detection circuitry for Brown-out Reset (BOR)

PIC16C6X Features	61	62	62A	R62	63	64	64A	R64	65	65A
Program Memory (EPROM) x 14	1K	2K	2K	_	4K	2K	2K	_	4K	4K
(ROM) x 14	_	_	_	2K	_		_	2K	_	_
Data Memory (Bytes) x 8	36	128	128	128	192	128	128	128	192	192
I/O Pins	13	22	22	22	22	33	33	33	33	33
Parallel Slave Port	_	_	_	_	_	Yes	Yes	Yes	Yes	Yes
Capture/Compare/PWM Module	_	1	1	1	2	1	1	1	2	2
Timer Modules	1	3	3	3	3	3	3	3	3	3
Serial Communication	_	SPI/ I ² C	SPI/ I ² C	SPI/ I ² C	SPI/I ² C, USART	SPI/ I ² C	SPI/ I ² C	SPI/ I ² C	SPI/I ² C, USART	SPI/I ² C, USART
In-Circuit Serial Programming	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Brown-out Reset	_	_	Yes	Yes	Yes		Yes	Yes	_	Yes
Interrupt Sources	3	7	7	7	10	8	8	8	11	11
Sink/Source Current (mA)	25/20	25/25	25/25	25/25	25/25	25/25	25/25	25/25	25/25	25/25

Pin Diagrams PDIP, SOIC, Windowed CERDIP SDIP, SOIC, SSOP, Windowed CERDIP MCLR/VPP → 18 **→** RA1 28 □ - RB7 RA3 ← 2 RA4/T0CKI ← 3 RA0 **→** □ 2 RA1 **→** □ 3 27 ☐ **→** RB6 26 ☐ **→** RB5 **PIC16C61** 16 → OSC1/CLKIN RA2 **←** □ 4 25 ☐ **←** RB4 PIC16C62 MCLR/Vpp → □4 15 → OSC2/CLKOUT RA3 **← □** 5 24 ☐ **→** RB3 RA4/T0CKI → ☐ 6 RA5/SS → ☐ 7 23 ☐ ← RB2 22 ☐ ← RB1 21 ☐ ← RB0/INT 14 **→** VDD Vss —▶ [5 RB0/INT ←► 6 13 Vss → □ 8 OSC1/CLKIN → □ 9 RB1 **←→** ☐ 7 12 → RB6 20 ☐ **←** VDD RB2 **←** ■ 8 11 **→** RB5 OSC2/CLKOUT ◀──☐ 10 19 ☐ **←** Vss RB3 **←** □ 9 RB4 RC0/T10SI/T1CKI ← ☐ 11 RC1/T10SO ← ☐ 12 18 ☐ **→** RC7 17 ☐ **→** RC6 RC2/CCP1 ← ☐ 13 16 ☐ ←→ RC5/SDO RC3/SCK/SCL ← ☐ 14 15 ☐ → RC4/SDI/SDA SDIP, SOIC, SSOP, Windowed CERDIP SDIP, SOIC, Windowed CERDIP 28 🗖 ◄ ► RB7 MCLR/Vpp -□ <-> RB7 MCLR/Vpp □ < → RB6 RA1 **←** □ 3 26 ☐ **←** RB5 RA1 ▼ ► **PIC16CR62** RA2 **←** □ 4 25 ☐ **←** RB4 RA2 ▼ □ PIC16C63 RA3 ← □ RA3 **←** □ 5 24 □ → ► RB3 C16C62A 24 □ **→** RB3 RA4/T0CKI → 6 23 ☐ **← ►** RB2 23 ☐ **← ▶** RB2 RA5/SS **←** 7 22 ☐ **←** RB1 RA5/SS ← 22 ☐ **←** ■ RB1 Vss —► □ 8 21 ☐ **←** ■ RB0/INT Vss —► □ 8 21 ☐ **←** ■ RB0/INT OSC1/CLKIN → 9 OSC2/CLKOUT ← 10 OSC1/CLKIN → □ OSC2/CLKOUT ← □ RC0/T1OSO/T1CKI ←► ☐ 11 RC0/T1OSO/T1CKI ←►□ 18 ☐ ← RC7/RX/DT RC1/T1OSI → ☐ 12 RC2/CCP1 → ☐ 13 17 ☐ **← ►** RC6 RC1/T1OSI/CCP2 ←►□ 12 17 ☐ → RC6/TX/CK RC5/SDO RC2/CCP1 →- □ 13 16 ☐ **←** RC5/SDO RC3/SCK/SCL ← □ RC3/SCK/SCL ← ☐ 14 15 ☐ ←► RC4/SDI/SDA PDIP, Windowed CERDIP MCLR/VPP → □ 1 RA0 → □ 2 RA1 → □ 3 RA2 → □ 4 MCLR/VPP → 1 40 D → RB7 MCI R/VPP ─►□ 1 RA0 **→** □ 2 39 ☐ **← ►** RB6 38 ☐ **← ►** RB5 36 ☐ ← RB3 35 ☐ ← RB2 34 □ **→** RB1 IC16C64 RC1/T1OSI/CCP2 ← ☐ 16 RC2/CCP1 ← ☐ 17 RC3/SCK/SCL ← □ 18 RD0/PSP0 ← □ 19 RD1/PSP1 ← □ 20 RC3/SCK/SCL → □ 18 RD0/PSP0 → □ 19 RD1/PSP1 → □ 20 RC3/SCK/SCL ← ☐ 18 RD0/PSP0 ← ☐ 19 RD1/PSP1 ← ☐ 20 23 ☐ → RC4/SDI/SDA 22 ☐ → RD3/PSP3 21 ☐ → RD2/PSP2

PIC16C6X

Table Of Contents

1.0 General Description	5
2.0 PIC16C6X Device Varieties	
3.0 Architectural Overview	9
4.0 Memory Organization	19
5.0 I/O Ports	47
6.0 Overview of Timer Modules	59
7.0 Timer0 Module	61
8.0 Timer1 Module	67
9.0 Timer2 Module	71
10.0 Capture/Compare/PWM (CCP) Module(s)	73
11.0 Synchronous Serial Port (SSP) Module	
12.0 Universal Synchronous Asynchronous Receiver Transmitter (USART)) Module95
13.0 Special Features of the CPU	111
14.0 Instruction Set Summary	131
15.0 Development Support	145
16.0 Electrical Characteristics for PIC16C61	149
17.0 DC and AC Characteristics Graphs and Tables for PIC16C61	
18.0 Electrical Characteristics for PIC16C62/64	
19.0 Electrical Characteristics for PIC16C62A/R62/64A/R64	185
20.0 Electrical Characteristics for PIC16C65	203
21.0 Electrical Characteristics for PIC16C63/65A	219
22.0 DC and AC Characteristics Graphs and Tables for:	
PIC16C62, PIC16C62A, PIC16CR62, PIC16C63, PIC16C64, PIC16C	
PIC16CR64, PIC16C65A	
23.0 Packaging Information	
Appendix A:	
Appendix B: Compatibility	
Appendix C: What's New	
Appendix D: What's Changed	
Appendix E: PIC16/17 Microcontrollers	
Pin Compatibility	
Index	
PIC16C6X Product Identification System	287

For register and module descriptions in this data sheet, device legends show which devices apply to those sections. For example, the legend below shows that some features of only the PIC16C62A, PIC16CR62, PIC16C63, PIC16C64A, PIC16CR64, and PIC16C65A are described in this section.

Applicable Devices

61 62 62A R62 63 64 64A R64 65 65A

To Our Valued Customers

We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional amount of time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please use the reader response form in the back of this data sheet to inform us. We appreciate your assistance in making this a better document.

1.0 GENERAL DESCRIPTION

The PIC16CXX is a family of low-cost, high-performance, CMOS, fully-static, 8-bit microcontrollers.

All PIC16/17 microcontrollers employ an advanced RISC architecture. The PIC16CXX microcontroller family has enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with separate 8-bit wide data. The two stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16CXX microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

The **PIC16C61** device has 36 bytes of RAM and 13 I/O pins. In addition a timer/counter is available.

The PIC16C62/62A/R62 devices have 128 bytes of RAM and 22 I/O pins. In addition, several peripheral features are available, including: three timer/counters, one Capture/Compare/PWM module and one serial port. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI™) or the two-wire Inter-Integrated Circuit (I²C) bus.

The **PIC16C63** device has 192 bytes of RAM and 22 I/O pins. In addition, several peripheral features are available, including: three timer/counters, two Capture/Compare/PWM modules and two serial ports. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. The Universal Synchronous Asynchronous Receiver Transmitter (USART) is also know as a Serial Communications Interface or SCI.

The **PIC16C64/64A/R64** devices have 128 bytes of RAM and 33 I/O pins. In addition, several peripheral features are available, including: three timer/counters, one Capture/Compare/PWM module and one serial port. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. An 8-bit Parallel Slave Port is also provided.

The **PIC16C65/65A** devices have 192 bytes of RAM and 33 I/O pins. In addition, several peripheral features are available, including: three timer/counters, two Capture/Compare/PWM modules and two serial ports. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. The Universal Synchronous Asynchronous Receiver Transmitter (USART) is also known as a Serial Communications Interface or SCI. An 8-bit Parallel Slave Port is also provided.

The PIC16C6X device family has special features to reduce external components, thus reducing cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low-cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for High Speed crystals. The SLEEP (power-down) mode offers a power saving mode. The user can wake the chip from SLEEP through several external and internal interrupts, and resets

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lock-

A UV erasable CERDIP packaged version is ideal for code development, while the cost-effective One-Time-Programmable (OTP) version is suitable for production in any volume.

The PIC16C6X family fits perfectly in applications ranging from high-speed automotive and appliance control to low-power remote sensors, keyboards and telecom processors. The EPROM technology makes customization of application programs (transmitter codes, motor speeds, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low-cost, low-power, high performance, ease-of-use, and I/O flexibility make the PIC16C6X very versatile even in areas where no microcontroller use has been considered before (e.g. timer functions, serial communication, capture and compare, PWM functions, and co-processor applications).

1.1 Family and Upward Compatibility

Those users familiar with the PIC16C5X family of microcontrollers will realize that this is an enhanced version of the PIC16C5X architecture. Please refer to Appendix A for a detailed list of enhancements. Code written for PIC16C5X can be easily ported to PIC16CXX family of devices (Appendix B).

1.2 <u>Development Support</u>

The PIC16CXX family is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a low-cost development programmer, and a full-featured programmer. A "C" compiler and fuzzy logic support tools are also available.

TABLE 1-1: PIC16C6X FAMILY OF DEVICES

		PIC16C62 ⁽¹⁾	PIC16C62A	PIC16CR62	PIC16C63	PIC16CR63
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20
	EPROM Program Memory (x14 words)	2K	2K	_	4K	_
Memory	ROM Program Memory (x14 words)	_	_	2K	_	4K
	Data Memory (bytes)	128	128	128	192	192
	Timer Module(s)	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
Peripherals	Capture/Compare/ PWM Module(s)	1	1	1	2	2
	Serial Port(s) (SPI/I ² C, USART)	SPI/I ² C	SPI/I ² C	SPI/I ² C	SPI/I ² C, USART	SPI/I ² C USART
	Parallel Slave Port	_	_	_	_	_
	Interrupt Sources	7	7	7	10	10
	I/O Pins	22	22	22	22	22
	Voltage Range (Volts)	3.0-6.0	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0
Features	In-Circuit Serial Programming	Yes	Yes	Yes	Yes	Yes
	Brown-out Reset	_	Yes	Yes	Yes	Yes
	Packages		28-pin SDIP, SOIC, SSOP	28-pin SDIP, SOIC, SSOP	28-pin SDIP, SOIC	28-pin SDIP, SOIC

		PIC16C64 ⁽¹⁾	PIC16C64A	PIC16CR64	PIC16C65 ⁽¹⁾	PIC16C65A	PIC16CR65
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20	20
	EPROM Program Memory (x14 words)	2K	2K	_	4K	4K	_
Memory	ROM Program Memory (x14 words)	_		2K	_	_	4K
	Data Memory (bytes)	128	128	128	192	192	192
	Timer Module(s)	TMR0,	TMR0,	TMR0,	TMR0,	TMR0,	TMR0,
		TMR1,	TMR1,	TMR1,	TMR1,	TMR1,	TMR1,
		TMR2	TMR2	TMR2	TMR2	TMR2	TMR2
Peripherals	Capture/Compare/ PWM Module(s)	1	1	1	2	2	2
	Serial Port(s) (SPI/I ² C, USART)	SPI/I ² C	SPI/I ² C	SPI/I ² C	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C USART
	Parallel Slave Port	Yes	Yes	Yes	Yes	Yes	Yes
	Interrupt Sources	8	8	8	11	11	11
	I/O Pins	33	33	33	33	33	33
	Voltage Range (Volts)	3.0-6.0	2.5-6.0	2.5-6.0	3.0-6.0	2.5-6.0	2.5-6.0
Features	In-Circuit Serial Programming	Yes	Yes	Yes	Yes	Yes	Yes
	Brown-out Reset	_	Yes	Yes	_	Yes	Yes
		44-pin PLCC,	44-pin PLCC,	, ,		44-pin PLCC,	40-pin DIP; 44-pin PLCC, MQFP, TQFP

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C6X Family devices use serial programming with clock pin RB6 and data pin RB7.

Note 1: Please contact your local Microchip sales office for availability of these devices.

2.0 PIC16C6X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C6X Product Identification System section at the end of this data sheet. When placing orders, please use that page of the data sheet to specify the correct part number.

For the PIC16C6X family of devices, there are four device "types" as indicated in the device number:

- C, as in PIC16C64. These devices have EPROM type memory and operate over the standard voltage range.
- LC, as in PIC16LC64. These devices have EPROM type memory and operate over an extended voltage range.
- CR, as in PIC16CR64. These devices have ROM program memory and operate over the standard voltage range.
- LCR, as in PIC16LCR64. These devices have ROM program memory and operate over an extended voltage range.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package, is optimal for prototype development and pilot programs.

The UV erasable version can be erased and reprogrammed to any of the configuration modes. Microchip's PICSTART® and PRO MATE™ programmers both support the PIC16C6X. Third party programmers also are available; refer to the *Microchip Third Party Guide* for a list of sources.

2.2 <u>One-Time-Programmable (OTP)</u> Devices

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

2.3 Quick-Turnaround-Production (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4 <u>Serialized Quick-Turnaround</u> Production (SQTPSM) Devices

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random, or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password, or ID number.

ROM devices do not allow serialization information in the program memory space. The user may have this information programmed in the data memory space.

For information on submitting ROM code, please contact your regional sales office.

2.5 Read Only Memory (ROM) Devices

Microchip offers masked ROM versions of several of the highest volume parts, thus giving customers a low cost option for high volume, mature products.

For information on submitting ROM code, please contact your regional sales office.

PIC16C6X

NOTES:

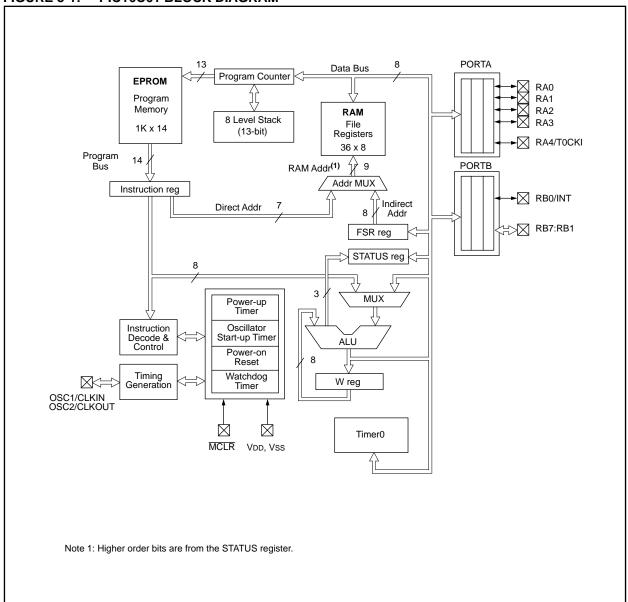
3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16CXX family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16CXX uses a Harvard architecture, in which, program and data are accessed from separate memories using separate buses. This improves bandwidth over traditional von Neumann architecture where program and data may be fetched from the same memory using the same bus. Separating program and data busses further allows instructions to be sized differently than 8-bit wide data words. Instruction opcodes are 14-bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions (Example 3-1). Consequently, all instructions execute in a single cycle (200 ns @ 20 MHz) except for program branches.

The PIC16C61 addresses 1K x 14 of program memory. The PIC16C62/62A/R62/64/64A/R64 address 2K x 14 of program memory, and the PIC16C63/65/65A devices address 4K x 14 of program memory. All program memory is internal.

The PIC16CXX can directly or indirectly address its register files or data memory. All special function registers including the program counter are mapped in the data memory. The PIC16CXX has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of "special optimal situations" makes programming with the PIC16CXX simple yet efficient, thus significantly reducing the learning curve.

The PIC16CXX device contains an 8-bit ALU and working register (W). The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.


The ALU is 8-bits wide and capable of addition, subtraction, shift, and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register), the other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending upon the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. Bits C and DC operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

© 1996 Microchip Technology Inc.

FIGURE 3-1: PIC16C61 BLOCK DIAGRAM

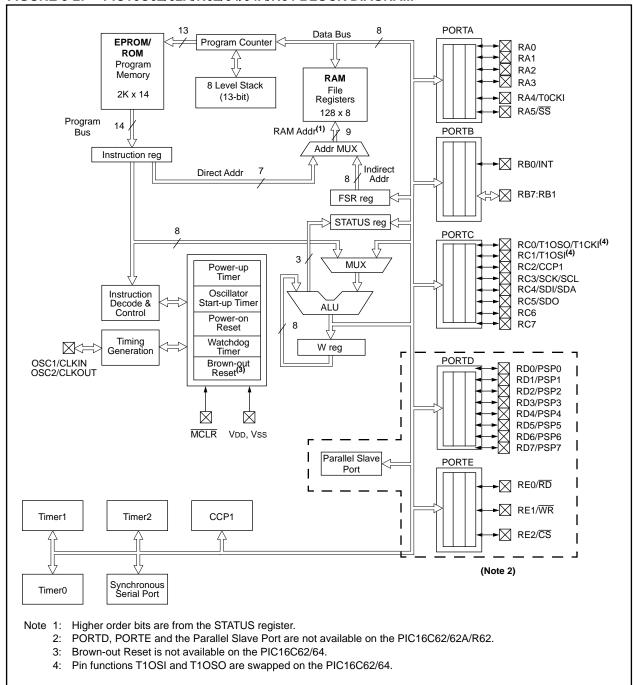


FIGURE 3-2: PIC16C62/62A/R62/64/64A/R64 BLOCK DIAGRAM

PORTA Data Bus Program Counter **EPROM** RA0 RA1 Program RA2 Memory RAM RA3 8 Level Stack File RA4/T0CKI 4K x 14 (13-bit) Registers RA5/SS 192 x 8 Program 14 RAM Addr⁽¹⁾ 9 Bus **PORTB** Addr MUX Instruction reg RB0/INT Indirect Addr Direct Addr 8 RB7:RB1 FSR reg STATUS reg 8 PORTC RC0/T1OSO/T1CKI RC1/T1OSI/CCP2 3 MUX RC2/CCP1 Power-up Timer RC3/SCK/SCL RC4/SDI/SDA Instruction Oscillator RC5/SDO Decode & Control Start-up Timer ALU RC6/TX/CK Power-on Reset RC7/RX/DT 8 Timing Generation Watchdog W reg OSC1/CLKIN OSC2/CLKOUT PORTD Brown-out Reset(3) RD0/PSP0 RD1/PSP1 RD2/PSP2 RD3/PSP3 RD4/PSP4 Ø 囟 RD5/PSP5 MCLR VDD, VSS RD6/PSP6 RD7/PSP7 Parallel Slave **PORTE** Port RE0/RD RE1/WR Timer0 Timer1 Timer2 RE2/CS (Note 2) Synchronous Serial Port USART CCP1 CCP2 Higher order bits are from the STATUS register. Note 1: PORTD, PORTE and the Parallel Slave Port are not available on the PIC16C63. Brown-out Reset is not available on the PIC16C65.

FIGURE 3-3: PIC16C63/65/65A BLOCK DIAGRAM

TABLE 3-1: PIC16C61 PINOUT DESCRIPTION

DIP Pin#	SOIC Pin#	Pin Type	Buffer Type	Description
16	16	I	ST/CMOS ⁽¹⁾	Oscillator crystal input/external clock source input.
15	15	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
4	4	I/P	ST	Master clear reset input/programming voltage input. This pin is an active low reset to the device.
				PORTA is a bi-directional I/O port.
17	17	I/O	TTL	
18	18	I/O	TTL	
1	1	I/O	TTL	
2	2	I/O	TTL	
3	3	I/O	ST	Can also be selected to be the clock input to the Timer0 timer/counter. Output is open drain type.
				PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
6	6	I/O	TTL/ST ⁽²⁾	RB0/INT can also be selected as an external interrupt pin.
7	7	I/O	TTL	
8	8	I/O	TTL	
9	9	I/O	TTL	
10	10	I/O	TTL	Interrupt on change pin.
11	11	I/O	TTL	Interrupt on change pin.
12	12	I/O	TTL/ST ⁽³⁾	Interrupt on change pin. Serial programming clock.
13	13	I/O	TTL/ST ⁽³⁾	Interrupt on change pin. Serial programming data.
5	5	Р	_	Ground reference for logic and I/O pins.
14	14	Р	_	Positive supply for logic and I/O pins.
	Pin# 16 15 4 17 18 1 2 3 6 7 8 9 10 11 12 13 5	Pin# Pin# 16 16 15 15 4 4 17 17 18 18 1 1 2 3 3 3	Pin# Pin Type 16 16 I 15 15 O 4 4 I/P 17 17 I/O 18 18 I/O 1 1 I/O 2 2 I/O 3 3 I/O 6 6 I/O 7 7 I/O 8 8 I/O 9 9 I/O 10 10 I/O 11 11 I/O 12 12 I/O 13 13 I/O 5 5 P	Pin# Pin Type Type 16 16 I ST/CMOS ⁽¹⁾ 15 15 O — 4 4 I/P ST 17 17 I/O TTL 18 18 I/O TTL 1 1 I/O TTL 2 2 I/O TTL 3 3 I/O ST 6 6 6 1/O TTL/ST ⁽²⁾ 7 7 1/O TTL 8 8 8 1/O TTL 11 11 11 11 1/O TTL 11 11 11 11 17 TTL/ST ⁽³⁾ TTL/ST ⁽⁴⁾ TTL/ST ⁽⁴

Legend: I = input

O = output

I/O = input/output

P = power

— = Not used TTL = TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.
2: This buffer is a Schmitt Trigger input when configured as the external interrupt.

3: This buffer is a Schmitt Trigger input when used in serial programming mode.

TABLE 3-2: PIC16C62/62A/R62/63 PINOUT DESCRIPTION

Pin Name	DIP, SSOP Pin#	Pin Type	Buffer Type	Description
OSC1/CLKIN	9	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	10	0	-	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/VPP	1	I/P	ST	Master clear reset input/programming voltage input. This pin is an active low reset to the device.
				PORTA is a bi-directional I/O port.
RA0	2	I/O	TTL	
RA1	3	I/O	TTL	
RA2	4	I/O	TTL	
RA3	5	I/O	TTL	
RA4/T0CKI	6	I/O	ST	Can also be selected to be the clock input to the Timer0 timer/counter. Output is open drain type.
RA5/SS	7	I/O	TTL	Slave select for the synchronous serial port.
				PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT	21	I/O	TTL/ST ⁽⁴⁾	RB0/INT can also be selected as an external interrupt pin.
RB1	22	I/O	TTL	
RB2	23	I/O	TTL	
RB3	24	I/O	TTL	
RB4	25	I/O	TTL	Interrupt on change pin.
RB5	26	I/O	TTL	Interrupt on change pin.
RB6	27	I/O	TTL/ST ⁽⁵⁾	Interrupt on change pin. Serial programming clock.
RB7	28	I/O	TTL/ST ⁽⁵⁾	Interrupt on change pin. Serial programming data.
				PORTC is a bi-directional I/O port.
RC0/T1OSO ⁽¹⁾ /T1CKI	11	I/O	ST	RC0/T1OSO/T1CKI can also be selected as a Timer1 oscillator output ⁽¹⁾ /Timer1 clock input.
RC1/T1OSI ⁽¹⁾ /CCP2 ⁽²⁾	12	I/O	ST	RC1/T1OSI can also be selected as a Timer1 oscillator input ⁽¹⁾ or Capture2 input/Compare2 output/PWM2 output ⁽²⁾ .
RC2/CCP1	13	I/O	ST	RC2/CCP1 can also be selected as a Capture1 input/Compare1 output/PWM1 output.
RC3/SCK/SCL	14	I/O	ST	RC3/SCK/SCL can also be selected as the synchronous serial clock input/output for both SPI and I ² C modes.
RC4/SDI/SDA	15	I/O	ST	RC4/SDI/SDA can also be selected as the SPI Data In (SPI mode) or data I/O (I ² C mode).
RC5/SDO	16	I/O	ST	RC5/SDO can also be selected as the SPI Data Out (SPI mode).
RC6/TX/CK ⁽²⁾	17	I/O	ST	RC6/TX/CK can also be selected as Asynchronous Transmit ⁽²⁾ or USART Synchronous Clock ⁽²⁾ .
RC7/RX/DT ⁽²⁾	18	I/O	ST	RC7/RX/DT can also be selected as the Asynchronous Receive ⁽²⁾ or USART Synchronous Data ⁽²⁾ .
Vss	8,19	Р	_	Ground reference for logic and I/O pins.
VDD	20	Р	_	Positive supply for logic and I/O pins.

Legend: I = input

O = output — = Not used I/O = input/output TTL = TTL input

P = power

ST = Schmitt Trigger input

- Note 1: Pin functions T1OSO and T1OSI are reversed on the PIC16C62.
 - 2: The USART and CCP2 are not available on the PIC16C62/62A/R62.
 - 3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.
 - 4: This buffer is a Schmitt Trigger input when configured as the external interrupt.
 - 5: This buffer is a Schmitt Trigger input when used in serial programming mode.

TABLE 3-3: PIC16C64/64A/R64/65/65A PINOUT DESCRIPTION

Pin Name	DIP Pin#	PLCC Pin#	MQFP Pin#	Pin Type	Buffer Type	Description
OSC1/CLKIN	13	14	30	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	14	15	31	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/VPP	1	2	18	I/P	ST	Master clear reset input/programming voltage input. This pin is an active low reset to the device.
						PORTA is a bi-directional I/O port.
RA0	2	3	19	I/O	TTL	
RA1	3	4	20	I/O	TTL	
RA2	4	5	21	I/O	TTL	
RA3	5	6	22	I/O	TTL	
RA4/T0CKI	6	7	23	I/O	ST	Can also be selected to be the clock input to the Timer0 timer/counter. Output is open drain type.
RA5/SS	7	8	24	I/O	TTL	Slave select for the synchronous serial port.
RB0/INT	33	36	8	I/O	TTL/ST ⁽⁴⁾	PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs. RB0/INT can also be selected as an external inter-
RB1	34	37		I/O	TTL	rupt pin.
RB2	35	38	9 10	I/O	TTL	
RB3	36	39	11	I/O	TTL	
RB4	37	39 41	14	I/O I/O	TTL	Interrupt on change nin
RB5	38	41	15	I/O	TTL	Interrupt on change pin. Interrupt on change pin.
RB6	39	43	16	I/O	TTL/ST ⁽⁵⁾	, , ,
RB7	40	43 44	17	I/O	TTL/ST ⁽⁵⁾	Interrupt on change pin. Serial programming clock. Interrupt on change pin. Serial programming data.
ND1	40	44	17	1/0	111/31	PORTC is a bi-directional I/O port.
RC0/T1OSO ⁽¹⁾ /T1CKI	15	16	32	I/O	ST	RC0/T1OSO/T1CKI can also be selected as a Timer1 oscillator output ⁽¹⁾ /Timer1 clock input.
RC1/T1OSI ⁽¹⁾ /CCP2 ⁽²⁾	16	18	35	I/O	ST	RC1/T1OSI/CCP2 can also be selected as a Timer1 oscillator input ⁽¹⁾ or Capture2 input/Compare2 output/PWM2 output ⁽²⁾ .
RC2/CCP1	17	19	36	I/O	ST	RC2/CCP1 can also be selected as a Capture1 input/Compare1 output/PWM1 output.
RC3/SCK/SCL	18	20	37	I/O	ST	RC3/SCK/SCL can also be selected as the synchro- nous serial clock input/output for both SPI and I ² C modes.
RC4/SDI/SDA	23	25	42	I/O	ST	RC4/SDI/SDA can also be selected as the SPI Data In (SPI mode) or data I/O (I ² C mode).
RC5/SDO	24	26	43	I/O	ST	RC5/SDO can also be selected as the SPI Data Out (SPI mode).
RC6/TX/CK ⁽²⁾	25	27	44	I/O	ST	RC6/TX/CK can also be selected as Asynchronous Transmit ⁽²⁾ or USART Synchronous Clock ⁽²⁾ .
RC7/RX/DT ⁽²⁾	26	29	1	I/O	ST	RC7/RX/DT can also be selected as the Asynchronous Receive ⁽²⁾ or USART Synchronous Data ⁽²⁾ .

Legend: I = input O

O = output
— = Not used

I/O = input/output

P = power

TTL = TTL input ST = Schmitt Trigger input

- Note 1: Pin functions T1OSO and T1OSI are reversed on the PIC16C64.
 - 2: CCP2 and the USART are not available on the PIC16C64/64A/R64.
 - 3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.
 - 4: This buffer is a Schmitt Trigger input when configured as the external interrupt.
 - 5: This buffer is a Schmitt Trigger input when used in serial programming mode.
 - 6: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

TABLE 3-3: PIC16C64/64A/R64/65/65A PINOUT DESCRIPTION (Cont.'d)

Pin Name	DIP Pin#	PLCC Pin#	MQFP Pin#	Pin Type	Buffer Type	Description
						PORTD can be a bi-directional I/O port or parallel slave port for interfacing to a microprocessor bus.
RD0/PSP0	19	21	38	I/O	ST/TTL ⁽⁶⁾	
RD1/PSP1	20	22	39	I/O	ST/TTL ⁽⁶⁾	
RD2/PSP2	21	23	40	I/O	ST/TTL ⁽⁶⁾	
RD3/PSP3	22	24	41	I/O	ST/TTL ⁽⁶⁾	
RD4/PSP4	27	30	2	I/O	ST/TTL ⁽⁶⁾	
RD5/PSP5	28	31	3	I/O	ST/TTL ⁽⁶⁾	
RD6/PSP6	29	32	4	I/O	ST/TTL ⁽⁶⁾	
RD7/PSP7	30	33	5	I/O	ST/TTL ⁽⁶⁾	
						PORTE is a bi-directional I/O port.
RE0/RD	8	9	25	I/O	ST/TTL ⁽⁶⁾	RE0/RD read control for parallel slave port.
RE1/WR	9	10	26	I/O	ST/TTL ⁽⁶⁾	RE1/WR write control for parallel slave port.
RE2/CS	10	11	27	I/O	ST/TTL ⁽⁶⁾	RE2/CS select control for parallel slave port.
Vss	12,31	13,34	6,29	Р	_	Ground reference for logic and I/O pins.
VDD	11,32	12,35	7,28	Р	_	Positive supply for logic and I/O pins.
NC	_	1,17, 28,40	12,13, 33,34	_	_	These pins are not internally connected. These pins should be left unconnected.

Legend: I = input O = output

- = Not used

I/O = input/output TTL = TTL input P = power ST = Schmitt Trigger input

Note 1: Pin functions T1OSO and T1OSI are reversed on the PIC16C64.

- 2: CCP2 and the USART are not available on the PIC16C64/64A/R64.
- 3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.
- 4: This buffer is a Schmitt Trigger input when configured as the external interrupt.
- 5: This buffer is a Schmitt Trigger input when used in serial programming mode.
- 6: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

3.1 **Clocking Scheme/Instruction Cycle**

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3, and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clock and instruction execution flow is shown in Figure 3-4.

3.2 **Instruction Flow/Pipelining**

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3, and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g. GOTO) then two cycles are required to complete the instruction (Example 3-1).

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

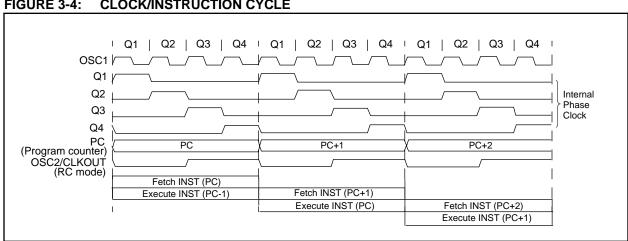
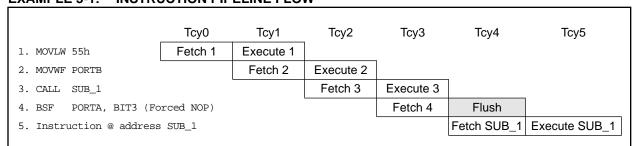



FIGURE 3-4: **CLOCK/INSTRUCTION CYCLE**

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

PIC16C6X

NOTES:

4.0 MEMORY ORGANIZATION

Applicable Devices61 62 62A R62 63 64 64A R64 65 65A

4.1 Program Memory Organization

The PIC16C6X family has a 13-bit program counter capable of addressing an 8K x 14 program memory space.

For the PIC16C61, only the first 1K x 14 (0000h-03FFh) is physically implemented. For the PIC16C62/62A/R62/64/64A/R64, only the first 2K x 14 (0000h-07FFh) is physically implemented, and for the PIC16C63/65/65A, only the first 4K x 14 (0000h-0FFFh) is physically implemented. Accessing a location above the physically implemented address will cause a wraparound.

The reset vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 4-1: PIC16C61 PROGRAM MEMORY MAP AND STACK

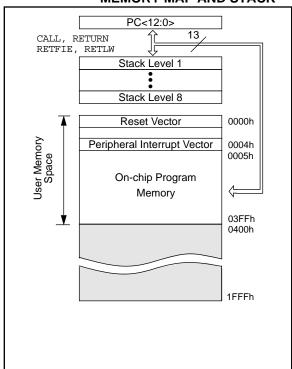


FIGURE 4-2: PIC16C62/62A/R62/64/64A/ R64 PROGRAM MEMORY MAP AND STACK

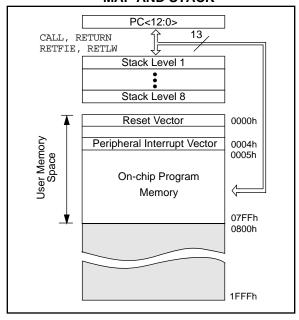
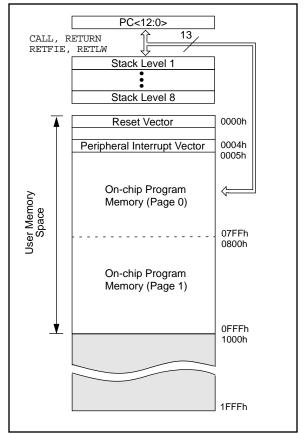



FIGURE 4-3: PIC16C63/65/65A PROGRAM MEMORY MAP AND STACK

4.2 <u>Data Memory Organization</u>

Applicable Devices 61 62 62 A R62 63 64 64 A R64 65 65 A

The data memory is partitioned into two Banks which contain the General Purpose Registers and the Special Function Registers. Bit RP0 is the bank select bit.

RP0 (STATUS<5>) = $1 \rightarrow Bank 1$

RP0 (STATUS<5>) = $0 \rightarrow Bank 0$

Each Bank extends up to 7Fh (128 bytes). The lower locations of each Bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers implemented as static RAM. Both Bank 0 and Bank 1 contain special function registers. Some "high use" special function registers from Bank 0 are mirrored in Bank 1 for code reduction and quicker access.

4.2.1 GENERAL PURPOSE REGISTERS

These registers are accessed either directly or indirectly through the file select register (FSR) (Section 4.5).

The general purpose register locations 8Ch-AFh of Bank 1 on the PIC16C61 are not physically implemented. These locations are mapped into 0Ch-2Fh of Bank 0.

FIGURE 4-4: PIC16C61 REGISTER FILE MAP

File Address	3	Fil	e Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h			87h
08h			88h
09h			89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch			8Ch
	General Purpose Register	Mapped in Bank 0 ⁽²⁾	
2Fh			AFh
30h			B0h
1			
			1
7Fh			FFh
/ / / /			
	Bank 0	Bank 1	
Unimple Note 1	emented data memore: Not a physical re		as '0'.
2		gister. are unimplemente	d in
		ess to these location	

 These locations are unimplemented in bank 1. Any access to these locations will access the corresponding bank 0 register.

FIGURE 4-5: PIC16C62/62A/R62/64/64A/ **R64 REGISTER FILE MAP**

-:. A			F1 A 11					
File Addre		INIDE(1)	File Address					
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h					
01h	TMR0	OPTION	81h					
02h	PCL	PCL	82h					
03h	STATUS	STATUS	83h					
04h	FSR	FSR	84h					
05h	PORTA	TRISA	85h					
06h	PORTB	TRISB	86h					
07h	PORTC	TRISC	87h					
08h	PORTD ⁽²⁾ PORTE ⁽²⁾	TRISD ⁽²⁾ TRISE ⁽²⁾	88h					
09h	_	_	89h					
0Ah	PCLATH	PCLATH	8Ah					
0Bh	INTCON	INTCON	_ 8Bh					
0Ch	PIR1	PIE1	8Ch					
0Dh			8Dh					
0Eh	TMR1L	PCON	8Eh					
0Fh	TMR1H		8Fh					
10h	T1CON		90h					
11h	TMR2		91h					
12h	T2CON	PR2	92h					
13h	SSPBUF	SSPADD	93h					
14h	SSPCON	SSPSTAT	94h					
15h	CCPR1L		95h					
16h	CCPR1H		96h					
17h	CCP1CON		97h					
18h			98h					
456			9Fh					
1Fh			- I					
20h		General	A0h					
		Purpose						
	General Purpose	Register	BFh					
	Register		C0h					
7Fh			FFh					
	Bank 0	Bank 1						
	mplemented data m	•	ad as '0'.					
Note	e 1: Not a physica 2: PORTD and	al register. PORTE are not av	roilable an					
	the PIC16C6		anable 011					
the FIC 10C02/02A/R02.								

FIGURE 4-6: **PIC16C63/65/65A REGISTER FILE MAP**

	1 1	~ !							
File Addre	ess		File Address						
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h						
01h	TMR0	OPTION	81h						
02h	PCL	PCL	82h						
03h	STATUS	STATUS	83h						
04h	FSR	FSR	84h						
05h	PORTA	TRISA	85h						
06h	PORTB	TRISB	86h						
07h	PORTC	TRISC	87h						
08h	PORTD ⁽²⁾	TRISD ⁽²⁾	88h						
09h	PORTE ⁽²⁾	TRISE ⁽²⁾	89h						
0Ah	PCLATH	PCLATH	8Ah						
0Bh	INTCON	INTCON	8Bh						
0Ch	PIR1	PIE1	8Ch						
0Dh	PIR2	PIE2	8Dh						
0Eh	TMR1L	PCON	8Eh						
0Fh	TMR1H		8Fh						
10h	T1CON		90h						
11h	TMR2		91h						
12h	T2CON	PR2	92h						
13h	SSPBUF	SSPADD	93h						
14h	SSPCON	SSPSTAT	94h						
15h	CCPR1L		95h						
16h	CCPR1H		96h						
17h	CCP1CON		97h						
18h	RCSTA	TXSTA	98h						
19h	TXREG	SPBRG	99h						
1Ah	RCREG		9Ah						
1Bh	CCPR2L		9Bh						
1Ch	CCPR2H		9Ch						
1Dh	CCP2CON		9Dh						
1Eh			9Eh						
1Fh			9Fh						
20h	General	General	A0h						
756	Purpose Register	Purpose Register							
7Fh	Bank 0	Bank 1	FFh						
☐ Unin			read as '0'.						
	Unimplemented data memory location; read as '0'. Note 1: Not a physical register								

^{2:} PORTD and PORTE are not available on the PIC16C63.

4.2.2 SPECIAL FUNCTION REGISTERS:

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. The special function registers can be classified into two sets (core and peripheral). The registers associated with the "core" functions are described in this section and those related to the operation of the peripheral features are described in the section of that peripheral feature.

TABLE 4-1: SPECIAL FUNCTION REGISTERS FOR THE PIC16C61

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR	Value on all other resets ⁽³⁾
Bank 0		•			•						
00h ⁽¹⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	dule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	ficant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	a memory ad	ldress pointe	r					xxxx xxxx	uuuu uuuu
05h	PORTA	_	_	_	PORTA Dat	a Latch whe	n written: PC	RTA pins wh	en read	x xxxx	u uuuu
06h	PORTB	PORTB Da	ta Latch whe	n written: PC	ORTB pins w	hen read				xxxx xxxx	uuuu uuuu
07h	_	Unimpleme	nted							_	_
08h	_	Unimpleme	nted							_	_
09h	_	Unimpleme	nted							_	_
0Ah ^(1,2)	PCLATH	_	_	_	Write Buffer	for the uppe	er 5 bits of th	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	_	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0-00 000x	0-00 000u
Bank 1			•	,	•				•		
80h ⁽¹⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	ficant Byte					0000 0000	0000 0000
83h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect data	a memory ad	ldress pointe	er					xxxx xxxx	uuuu uuuu
85h	TRISA	_	_	_	PORTA Dat	a Direction F	Register			1 1111	1 1111
86h	TRISB	PORTB Da	ta Direction (Control Regis	ster					1111 1111	1111 1111
87h	-	Unimplemented						_			
88h	-	Unimplemented							_	_	
89h	_	Unimpleme	nted							_	_
8Ah ^(1,2)	PCLATH	_	_	_	Write Buffer	for the uppe	er 5 bits of th	e Program C	ounter	0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	_	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0-00 000x	0-00 000u

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented locations read as '0'. Shaded locations are unimplemented and read as '0'

- Note 1: These registers can be addressed from either bank.
 - 2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)
 - 3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer Reset.
 - 4: The IRP and RP1 bits are reserved on the PIC16C6X, always maintain these bits clear.

TABLE 4-2: SPECIAL FUNCTION REGISTERS FOR THE PIC16C62/62A/R62

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾
Bank 0											
00h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (n	ot a physica	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)		0000 0000	0000 0000					
03h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	a memory ad	ldress pointe	er					xxxx xxxx	uuuu uuuu
05h	PORTA	_	_	PORTA Dat	a Latch wher	written: PO	RTA pins wh	en read		xx xxxx	uu uuuu
06h	PORTB	PORTB Da	ta Latch whe		xxxx xxxx	uuuu uuuu					
07h	PORTC	PORTC Da	ta Latch whe		xxxx xxxx	uuuu uuuu					
08h	_	Unimpleme	nted		_	_					
09h	_	Unimpleme	nted		_	_					
0Ah ^(1,2)	PCLATH	_	_	ounter	0 0000	0 0000					
0Bh ⁽¹⁾	INTCON	GIE	PEIE	RBIF	0000 000x	0000 000u					
0Ch	PIR1	(6)	(6)	TMR1IF	00 0000	000 0000					
0Dh	_	Unimpleme	nted							_	-
0Eh	TMR1L	Holding reg	ister for the L	_east Signific	cant Byte of t	he 16-bit TM	R1 register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	ister for the I	Most Signific	ant Byte of th	ne 16-bit TMF	R1 register			xxxx xxxx	uuuu uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	ıs Serial Port	Receive Bu	iffer/Transmit	Register				xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	1 (LSB)						xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	1 (MSB)						xxxx xxxx	uuuu uuuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h-1Fh	_	Unimpleme	nted							_	_

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'.

Shaded locations are unimplemented, read as '0'.

- Note 1: These registers can be addressed from either bank.
 - 2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)
 - 3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.
 - 4: The BOR bit is reserved on the PIC16C62, always maintain this bit set.
 - 5: The IRP and RP1 bits are reserved on the PIC16C6X, always maintain these bits clear.
 - 6: PIE1<7:6> and PIR1<7:6> are reserved on the PIC16C62/62A/R62, always maintain these bits clear.

PIC16C6X

TABLE 4-2: SPECIAL FUNCTION REGISTERS FOR THE PIC16C62/62A/R62 (Cont.'d)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾
Bank 1											
80h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)		0000 0000	0000 0000					
83h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect data	a memory ac	Idress pointe	er					xxxx xxxx	uuuu uuuu
85h	TRISA	_	_	PORTA Dat	ta Direction R	egister				11 1111	11 1111
86h	TRISB	PORTB Dat	ta Direction F		1111 1111	1111 1111					
87h	TRISC	PORTC Da	ta Direction I		1111 1111	1111 1111					
88h	_	Unimpleme	nted		_	_					
89h	_	Unimpleme	nted		_	_					
8Ah ^(1,2)	PCLATH	_	_	0 0000	0 0000						
8Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	(6)	(6)	_	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	00 0000	00 0000
8Dh	_	Unimpleme	nted						•	_	_
8Eh	PCON	_	_	_	_	_	_	POR	BOR ⁽⁴⁾	qq	uu
8Fh	_	Unimpleme	nted			!		!	!	_	_
90h	_	Unimpleme	Jnimplemented							_	_
91h	_	Unimpleme	nted							_	_
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111
93h	SSPADD	Synchronou	ıs Serial Por	t (I ² C mode)	Address Reg	jister				0000 0000	0000 0000
94h	SSPSTAT		_	D/Ā	Р	S	R/W	UA	BF	00 0000	00 0000
95h-9Fh	_	Unimpleme	nted								

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'.

Shaded locations are unimplemented, read as '0'.

- Note 1: These registers can be addressed from either bank.
 - 2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)
 - 3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.
 - 4: The BOR bit is reserved on the PIC16C62, always maintain this bit set.
 - 5: The IRP and RP1 bits are reserved on the PIC16C6X, always maintain these bits clear.
 - 6: PIE1<7:6> and PIR1<7:6> are reserved on the PIC16C62/62A/R62, always maintain these bits clear.

TABLE 4-3: SPECIAL FUNCTION REGISTERS FOR THE PIC16C63

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾
Bank 0	•										
00h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (n	ot a physica	l register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signi	ficant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h(1)	FSR	Indirect data	a memory ac	Idress pointe	er	!		!	!	xxxx xxxx	uuuu uuuu
05h	PORTA	_	_	PORTA Dat	a Latch wher	written: PO	RTA pins wh	en read		xx xxxx	uu uuuu
06h	PORTB	PORTB Dat	ta Latch whe	n written: PO	ORTB pins wl	nen read				xxxx xxxx	uuuu uuuu
07h	PORTC	PORTC Dat	ta Latch whe	n written: Po	ORTC pins w	hen read				xxxx xxxx	uuuu uuuu
08h	_	Unimpleme	nted							_	_
09h	_	Unimpleme	nted							_	_
0Ah ^(1,2)	PCLATH	1	-	-	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	(5)	(5)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2	_	-	_		_	_	_	CCP2IF	0	0
0Eh	TMR1L	Holding reg	ister for the I	_east Signifi	cant Byte of t	he 16-bit TM	R1 register	-	•	xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	ister for the I	Most Signific	ant Byte of th	ne 16-bit TMI	R1 register			xxxx xxxx	uuuu uuuu
10h	T1CON	_		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	ıs Serial Por	t Receive Bu	ıffer/Transmit	Register				xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	1 (LSB)						xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	1 (MSB)						xxxx xxxx	uuuu uuuu
17h	CCP1CON	1	1	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tra	nsmit Data F	Register						0000 0000	0000 0000
1Ah	RCREG	USART Red	ceive Data R	egister						0000 0000	0000 0000
1Bh	CCPR2L	Capture/Co	mpare/PWM	2 (LSB)						xxxx xxxx	uuuu uuuu
1Ch	CCPR2H	Capture/Co	mpare/PWM	2 (MSB)						xxxx xxxx	uuuu uuuu
1Dh	CCP2CON	_		CCP2X	CCP2Y	ССР2М3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
1Eh-1Fh	_	Unimpleme	nted					ı	1	_	_

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

- Note 1: These registers can be addressed from either bank.
 - 2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)
 - 3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.
 - 4: The IRP and RP1 bits are reserved on the PIC16C6X, always maintain these bits clear.
 - 5: PIE1<7:6> and PIR1<7:6> are reserved on the PIC16C63, always maintain these bits clear.

PIC16C6X

TABLE 4-3: SPECIAL FUNCTION REGISTERS FOR THE PIC16C63 (Cont.'d)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾
Bank 1											
80h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Sigr	nificant Byte					0000 0000	0000 0000
83h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect data	a memory ac	Idress pointe	er		•	•	•	xxxx xxxx	uuuu uuuu
85h	TRISA	_	_	PORTA Dat	ta Direction R	egister				11 1111	11 1111
86h	TRISB	PORTB Dat	ta Direction F	Register						1111 1111	1111 1111
87h	TRISC	PORTC Da	ta Direction I	Register						1111 1111	1111 1111
88h	_	Unimpleme	nted							_	ı
89h	_	Unimpleme	nted							_	1
8Ah ^(1,2)	PCLATH	_	_	_	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	PEIE	RBIF	0000 000x	0000 000u					
8Ch	PIE1	(5)	(5)	TMR1IE	0000 0000	0000 0000					
8Dh	PIE2	_	_	_	_	_	_	_	CCP2IE	0	0
8Eh	PCON	_	_		_	_	_	POR	BOR	qq	uu
8Fh	_	Unimpleme	nted							_	_
90h	_	Unimpleme	nted							_	_
91h	_	Unimpleme	nted							_	_
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111
93h	SSPADD	Synchronou	us Serial Por	t (I ² C mode)	Address Reg	gister				0000 0000	0000 0000
94h	SSPSTAT	_	_	D/Ā	Р	S	R/W	UA	BF	00 0000	00 0000
95h	_	Unimpleme	nted							_	-
96h	_	Unimpleme	nted		_	_					
97h	_	Unimpleme	nted		_	-					
98h ⁽²⁾	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h ⁽²⁾	SPBRG	Baud Rate	Generator R		0000 0000	0000 0000					
9Ah	_	Unimpleme	nted		_	_					
9Bh	_	Unimpleme	nted							_	_
9Ch	_	Unimpleme	nted							_	_
9Dh	_	Unimpleme	nted								
9Eh	_	Unimpleme	nted							_	_
9Fh	_	Unimpleme	nted							_	_

 $\label{eq:location} \textbf{Legend:} \quad \textbf{x} = \textbf{unknown}, \ \textbf{u} = \textbf{unchanged}, \ \textbf{q} = \textbf{value depends on condition}, \ \textbf{-} = \textbf{unimplemented location read as '0'}.$

Shaded locations are unimplemented, read as '0'.

- Note 1: These registers can be addressed from either bank.
 - 2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)
 - 3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.
 - 4: The IRP and RP1 bits are reserved on the PIC16C6X, always maintain these bits clear.
 - 5: PIE1<7:6> and PIR1<7:6> are reserved on the PIC16C63, always maintain these bits clear.

TABLE 4-4: SPECIAL FUNCTION REGISTERS FOR THE PIC16C64/64A/R64

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾
Bank 0											
00h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	lule's registe		xxxx xxxx	uuuu uuuu					
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)		0000 0000	0000 0000					
03h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	a memory ad	ldress pointe	er					xxxx xxxx	uuuu uuuu
05h	PORTA	ı		PORTA Dat	a Latch wher	written: PO	RTA pins wh	en read		xx xxxx	uu uuuu
06h	PORTB	PORTB Dat	ta Latch whe		xxxx xxxx	uuuu uuuu					
07h	PORTC	PORTC Da	ta Latch whe		xxxx xxxx	uuuu uuuu					
08h	PORTD	PORTD Dat	ta Latch whe		xxxx xxxx	uuuu uuuu					
09h	PORTE	-		RE0	xxx	uuu					
0Ah ^(1,2)	PCLATH	_	_	ounter	0 0000	0 0000					
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF	(6)	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	00 0000	00 0000
0Dh	_	Unimpleme	nted							_	_
0Eh	TMR1L	Holding reg	ister for the L	_east Signific	cant Byte of t	he 16-bit TM	R1 register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	ister for the I	Most Signific	ant Byte of th	e 16-bit TMF	R1 register			xxxx xxxx	uuuu uuuu
10h	T1CON	-	_	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	imer2 module's register								0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	T2CKPS0	-000 0000	-000 0000				
13h	SSPBUF	Synchronou	ıs Serial Port	Receive Bu	ffer/Transmit	Register				xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	1 (LSB)						xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	1 (MSB)						xxxx xxxx	uuuu uuuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h-1Fh	_	Unimpleme	nted							_	_

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

- Note 1: These registers can be addressed from either bank.
 - 2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)
 - 3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.
 - 4: The \overline{BOR} bit is reserved on the PIC16C64, always maintain this bit set.
 - 5: The IRP and RP1 bits are reserved on the PIC16C6X, always maintain these bits clear.
 - 6: PIE1<6> and PIR1<6> are reserved on the PIC16C64/64A/R64, always maintain these bits clear.

TABLE 4-4: SPECIAL FUNCTION REGISTERS FOR THE PIC16C64/64A/R64 (Cont.'d)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾
Bank 1											
80h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Sigr	nificant Byte					0000 0000	0000 0000
83h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	С	0001 1xxx	000q quuu					
84h ⁽¹⁾	FSR	Indirect data	a memory ac	•	xxxx xxxx	uuuu uuuu					
85h	TRISA	_	_		11 1111	11 1111					
86h	TRISB	PORTB Da	ta Direction I		1111 1111	1111 1111					
87h	TRISC	PORTC Da	ta Direction I		1111 1111	1111 1111					
88h	TRISD	PORTD Da	ta Direction I		1111 1111	1111 1111					
89h	TRISE	IBF	OBF	IBOV	TRISE0	0000 -111	0000 -111				
8Ah ^(1,2)	PCLATH	_	_	_	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	PSPIE	(6)	_	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	00 0000	00 0000
8Dh	_	Unimpleme	nted							_	_
8Eh	PCON	_	_	_	_	_	_	POR	BOR ⁽⁴⁾	qq	uu
8Fh	_	Unimpleme	Unimplemented								_
90h	_	Unimpleme	Unimplemented								_
91h	_	Unimpleme	nted							_	_
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111
93h	SSPADD	Synchronou	us Serial Por	t (I ² C mode)	Address Reg	ister				0000 0000	0000 0000
94h	SSPSTAT	_	_	D/Ā	Р	S	R/W	UA	BF	00 0000	00 0000
95h-9Fh	_	Unimpleme	nted							_	_

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

- Note 1: These registers can be addressed from either bank.
 - 2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)
 - 3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.
 - 4: The \overline{BOR} bit is reserved on the PIC16C64, always maintain this bit set.
 - 5: The IRP and RP1 bits are reserved on the PIC16C6X, always maintain these bits clear.
 - 6: PIE1<6> and PIR1<6> are reserved on the PIC16C64/64A/R64, always maintain these bits clear.

TABLE 4-5: SPECIAL FUNCTION REGISTERS FOR THE PIC16C65/65A

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾
Bank 0											
00h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signi	ficant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	a memory ac	Idress pointe	er					xxxx xxxx	uuuu uuuu
05h	PORTA	_	_	PORTA Dat	ta Latch wher	n written: PO	RTA pins wh	en read		xx xxxx	uu uuuu
06h	PORTB	PORTB Dat	ta Latch whe	n written: P0	ORTB pins wl	hen read				xxxx xxxx	uuuu uuuu
07h	PORTC	PORTC Da	ta Latch whe	n written: Po	ORTC pins w	hen read				xxxx xxxx	uuuu uuuu
08h	PORTD	PORTD Date	ta Latch whe	n written: Po	ORTD pins w	hen read				xxxx xxxx	uuuu uuuu
09h	PORTE	_	_	_	_	_	RE2	RE1	RE0	xxx	uuu
0Ah ^(1,2)	PCLATH	_	_	ounter	0 0000	0 0000					
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF	(6)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2	_	_	_		_	_	_	CCP2IF	0	0
0Eh	TMR1L	Holding reg	lolding register for the Least Significant Byte of the 16-bit TMR1 register								uuuu uuuu
0Fh	TMR1H	Holding reg	ister for the I	Most Signific	ant Byte of th	ne 16-bit TMI	R1 register			xxxx xxxx	uuuu uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	ıs Serial Por	t Receive Bu	uffer/Transmit	Register				xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	1 (LSB)						xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	1 (MSB)						xxxx xxxx	uuuu uuuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tra	nsmit Data F	Register						0000 0000	0000 0000
1Ah	RCREG	USART Red	ceive Data R	egister						0000 0000	0000 0000
1Bh	CCPR2L	Capture/Co	mpare/PWM	2 (LSB)						xxxx xxxx	uuuu uuuu
1Ch	CCPR2H	Capture/Co	mpare/PWM	2 (MSB)						xxxx xxxx	uuuu uuuu
1Dh	CCP2CON	_	_	CCP2X	CCP2Y	ССР2М3	CCP2M2	CCP2M1	ССР2М0	00 0000	00 0000
1Eh-1Fh	_	Unimpleme	nted		•	,				_	_
						101					

 $\label{eq:location} \textbf{Legend:} \quad \textbf{x} = \textbf{unknown}, \ \textbf{u} = \textbf{unchanged}, \ \textbf{q} = \textbf{value} \ \textbf{depends} \ \textbf{on condition}, \ \textbf{-} = \textbf{unimplemented location read as '0'}.$

Shaded locations are unimplemented, read as '0'.

- Note 1: These registers can be addressed from either bank.
 - 2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)
 - 3: Other (non power-up) resets include external reset through $\overline{\text{MCLR}}$ and the Watchdog Timer reset.
 - 4: The BOR bit is reserved on the PIC16C65, always maintain this bit set.
 - 5: The IRP and RP1 bits are reserved on the PIC16C6X, always maintain these bits clear.
 - 6: PIE1<6> and PIR1<6> are reserved on the PIC16C65/65A, always maintain these bits clear.

TABLE 4-5: SPECIAL FUNCTION REGISTERS FOR THE PIC16C65/65A (Cont.'d)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾
Bank 1		•									
80h ⁽¹⁾	INDF	Addressing	this location	uses conte	nts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Sig	nificant Byte					0000 0000	0000 0000
83h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect data	a memory ac	Idress point	er				•	xxxx xxxx	uuuu uuuu
85h	TRISA	_	_	PORTA Da	ta Direction R	egister				11 1111	11 1111
86h	TRISB	PORTB Dat	ta Direction F	Register						1111 1111	1111 1111
87h	TRISC	PORTC Da	ta Direction F	Register						1111 1111	1111 1111
88h	TRISD	PORTD Da	ta Direction I	Register						1111 1111	1111 1111
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111
8Ah ^(1,2)	PCLATH	_	_	_	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	PEIE	RBIF	0000 000x	0000 000u					
8Ch	PIE1	PSPIE	(6)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh	PIE2	_	_	_	_	_	_	_	CCP2IE	0	0
8Eh	PCON	_	_		_	_	_	POR	BOR ⁽⁴⁾	qq	uu
8Fh	_	Unimpleme	nted							_	_
90h	_	Unimpleme	nted							_	_
91h	_	Unimpleme	nted							_	_
92h	PR2	Timer2 Peri	iod Register							1111 1111	1111 1111
93h	SSPADD	Synchronou	us Serial Por	t (I ² C mode)	Address Reg	ister				0000 0000	0000 0000
94h	SSPSTAT	_	_	D/Ā	Р	S	R/W	UA	BF	00 0000	00 0000
95h	_	Unimpleme	nted							_	_
96h	_	Unimpleme	nted							_	-
97h	_	Unimpleme	nted							_	_
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generator R	egister	•					0000 0000	0000 0000
9Ah	_	Unimpleme	nted							_	_
9Bh	_	Unimpleme	nted							_	_
9Ch	_	Unimpleme	nted							_	_
9Dh	_	Unimpleme	nted							_	_
9Eh	_	Unimpleme	nted							_	_
9Fh	_	Unimpleme	nted							_	_

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

- Note 1: These registers can be addressed from either bank.
 - 2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)
 - 3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.
 - 4: The BOR bit is reserved on the PIC16C65, always maintain this bit set.
 - 5: The IRP and RP1 bits are reserved on the PIC16C6X, always maintain these bits clear.
 - 6: PIE1<6> and PIR1<6> are reserved on the PIC16C65/65A, always maintain these bits clear.

4.2.2.1 STATUS REGISTER

Applicable Devices61 62 62A R62 63 64 64A R64 65 65A

The STATUS register, shown in Figure 4-7, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any status bits, see the "Instruction Set Summary."

- Note 1: Bits IRP and RP1 (STATUS<7:6>) are not used by the PIC16C6X and should be maintained clear. Use of these bits as general purpose R/W bits is NOT recommended, since this may affect upward compatibility with future products.
- Note 2: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

FIGURE 4-7: STATUS REGISTER (ADDRESS 03h, 83h)

R/W-0 IRP	R/W-0 RP1	R/W-0 RP0	<u>R-1</u> TO	R-1 PD	R/W-x Z	R/W-x DC	R/W-x C	R = Readable bit
bit7	•				•		bit0	W = Writable bit - n = Value at POR reset x = unknown
bit 7:	1 = Bank 2 0 = Bank 0	2, 3 (100h - 1), 1 (00h - F	1FFh) Fh)		ect addressin	o,	lways mainta	in this bit clear.
bit 6-5:	11 = Bank 10 = Bank 01 = Bank 00 = Bank Each bank	3 (180h - 11 2 (100h - 1 1 (80h - FF 0 (00h - 7F is 128 byte	FFh) 7Fh) h) h) s.	·	or direct add	G,	ays maintain	this bit clear.
bit 4:				ıction, or SI	LEEP instruct	ion		
bit 3:		-down bit ower-up or l cution of the	•		ion			
bit 2:		sult of an ar		•	ition is zero	ero		
bit 1:	1 = A carry		e 4th low o	rder bit of t	he result occ		structions) (F	or borrow the polarity is reversed
bit 0:	1 = A carry 0 = No car	out from th ry-out from	e most sig the most si	nificant bit o gnificant bi	of the result of t of the resul	occurred	ons)(For born	ow the polarity is reversed).

For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.

4.2.2.2 OPTION REGISTER

Applicable Devices
61 62 62 A R62 63 64 64 A R64 65 65 A

The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the external INT interrupt, TMR0, and the weak pull-ups on PORTB.

Note: To achieve a 1:1 prescaler assignment for TMR0 register, assign the prescaler to the Watchdog Timer by setting the PSA (OPTION<3>) bit.

FIGURE 4-8: OPTION REGISTER (ADDRESS 81h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	R = Readable bit
oit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7:	RBPU: PORTB 1 = PORTB 0 = PORTB	pull-ups ar	e disabled		al port latch	values		
bit 6:	INTEDG: In 1 = Interrup 0 = Interrup	t on rising e	edge of RE	0/INT pin				
bit 5:	T0CS : TMR 1 = Transitio 0 = Internal	on on RA4/	T0CKI pin		-)			
bit 4:		ent on high-	to-low trar	sition on R	A4/T0CKI pii A4/T0CKI pii			
bit 3:	PSA: Prescale 1 = Prescale 0 = Prescale	er is assign	ed to the \		lule			
bit 2-0:	PS2:PS0 : F	rescaler Ra	ate Select	bits				
	Bit Value	TMR0 Ra	ate WD	Γ Rate				
	000 001 010 011 100 101	1:2 1:4 1:8 1:16 1:32 1:64 1:12	1:	2 4				

4.2.2.3 INTCON REGISTER

Applicable Devices
61 62 62 A R62 63 64 64 A R64 65 65 A

The INTCON Register is a readable and writable register which contains the various enable and flag bits for the TMR0 register overflow, RB port change and external RB0/INT pin interrupts.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

FIGURE 4-9: INTCON REGISTER FOR PIC16C61 (ADDRESS 0Bh, 8Bh)

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	
GIE bit7	_	TOIE	INTE	RBIE	TOIF	INTF	RBIF bit0	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset x = unknown
bit 7:	GIE: ⁽¹⁾ Glo 1 = Enable 0 = Disable	s all un-ma	sked interr					
bit 6:	Unimplem	ented: Rea	d as '0'					
bit 5:	T0IE: TMR 1 = Enable 0 = Disable	s the TMR0	overflow i	nterrupt				
bit 4:	INTE: RB0 1 = Enable 0 = Disable	s the RB0/I	NT externa	l interrupt				
bit 3:	RBIE: RB 1 = Enable 0 = Disable	s the RB po	ort change	interrupt				
bit 2:	T0IF: TMR 1 = TMR0 0 = TMR0	register ove	rflowed (m	ust be clea	red in softwa	re)		
bit 1:	INTF: RB0 1 = The RE 0 = The RE	30/INT exte	rnal interru	ot occurred	(must be cle	ared in soft	ware)	
bit 0:	RBIF: RB 1 = At leas 0 = None of	t one of the	RB7:RB4	oins change	ed state (see d state	Section 5.2	to clear inte	errupt)
Note 1:	If an interru							onally be re-enabled by the RETFI

FIGURE 4-10: INTCON REGISTER FOR PIC16C62/62A/R62/63/64/64A/R64/65/65A (ADDRESS 0Bh, 8Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	
GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	R = Readable bit
bit7	1	,					bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset x = unknown
bit 7:	1 = Enable	bbal Interrup s all un-ma es all interru	sked interr					
bit 6:		•	sked peripl	neral interru	pts			
bit 5:		0 Overflow s the TMR0 es the TMR	overflow i	nterrupt				
bit 4:	1 = Enable	I/INT Externes the RB0/les the RB0/	NT externa					
bit 3:	1 = Enable	Port Chang s the RB po es the RB p	ort change	interrupt				
bit 2:	T0IF: TMR 1 = TMR0 0 = TMR0	register ove	erflowed (m	ust be clea	red in softwa	ire)		
bit 1:		30/INT exte	rnal interru		(must be cle	eared in soft	ware)	
bit 0:	1 = At leas		RB7:RB4		ed state (see d state	Section 5.2	to clear the	e interrupt)
Note 1:		by the RET					•	I, the GIE bit may unintentionally be fer to Section 13.5 for a detailed

4.2.2.4 PIE1 REGISTER

Applicable Devices
61 62 62A R62 63 64 64A R64 65 65A

This register contains the individual enable bits for the peripheral interrupts.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

FIGURE 4-11: PIE1 REGISTER FOR PIC16C62/62A/R62 (ADDRESS 8Ch)

D14/ 0	D. 0.4.4.0			D. 0.4.4. 0	5.44.6	5.44.6	D. 3.4.4.0				
RW-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	_		_	SSPIE	CCP1IE	TMR2IE	TMR1IE	R = Readable bit			
bit7 bit 7-6:	Reserved:	Always ma	intain these	e bits clear.			bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset			
bit 5-4:	Unimplemented: Read as '0'										
bit 3:	SSPIE: Synchronous Serial Port Interrupt Enable bit 1 = Enables the SSP interrupt 0 = Disables the SSP interrupt										
bit 2:	CCP1IE: CCP1 Interrupt Enable bit 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt										
bit 1:	TMR2IE: TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt										
bit 0:	TMR1IE: T 1 = Enable: 0 = Disable	s the TMR1	overflow i	nterrupt	t						

FIGURE 4-12: PIE1 REGISTER FOR PIC16C63 (ADDRESS 8Ch)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 TMR1IE TMR2IE **RCIE** TXIE **SSPIE** CCP1IE R = Readable bit W = Writable bit bit7 bit0 U = Unimplemented bit, read as '0' n = Value at POR reset bit 7-6: Reserved: Always maintain these bits clear. bit 5: RCIE: USART Receive Interrupt Enable bit 1 = Enables the USART receive interrupt 0 = Disables the USART receive interrupt bit 4: TXIE: USART Transmit Interrupt Enable bit 1 = Enables the USART transmit interrupt 0 = Disables the USART transmit interrupt bit 3: SSPIE: Synchronous Serial Port Interrupt Enable bit 1 = Enables the SSP interrupt 0 = Disables the SSP interrupt CCP1IE: CCP1 Interrupt Enable bit bit 2: 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt bit 1: TMR2IE: TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt bit 0: TMR1IE: TMR1 Overflow Interrupt Enable bit 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt

FIGURE 4-13: PIE1 REGISTER FOR PIC16C64/64A/R64 (ADDRESS 8Ch)

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
PSPIE	_	_	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	R = Readable bit			
bit7 bit 7:	PSPIE: Pa 1 = Enable 0 = Disable	s the PSP	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset								
bit 6:	Reserved: Always maintain this bit clear.										
bit 5-4:	Unimplemented: Read as '0'										
bit 3:	SSPIE: Synchronous Serial Port Interrupt Enable bit 1 = Enables the SSP interrupt 0 = Disables the SSP interrupt										
bit 2:	CCP1IE: CCP1 Interrupt Enable bit 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt										
bit 1:	TMR2IE: T 1 = Enable 0 = Disable	s the TMR									
bit 0:	TMR1IE : T 1 = Enable 0 = Disable	s the TMR	1 overflow	•	it						

FIGURE 4-14: PIE1 REGISTER FOR PIC16C65/65A (ADDRESS 8Ch)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
PSPIE	_	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	R = Readable bit				
bit7							bit0	W = Writable bit				
								U = Unimplemented bit, read as '0'				
								- n = Value at POR reset				
bit 7:	PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit											
	1 = Enable	s the PSP i	read/write i	nterrupt	•							
	0 = Disable	s the PSP	read/write	nterrupt								
bit 6:	Reserved:	Always ma	intain this	oit clear.								
bit 5:	RCIE: USA	RT Receiv	e Interrupt	Enable bit								
	1 = Enable											
	0 = Disable	s the USA	RT receive	interrupt								
bit 4:	TXIE: USA											
	1 = Enable			•								
	0 = Disable											
bit 3:	SSPIE: Syr			Interrupt Er	nable bit							
	1 = Enable 0 = Disable											
Lit O			•	L-14								
bit 2:	CCP1IE: C 1 = Enable		•	DIT								
	0 = Disable											
bit 1:	TMR2IE: T			errunt Enal	nle hit							
Dit 1.	1 = Enable											
	0 = Disables the TMR2 to PR2 match interrupt											
bit 0:	TMR1IE: T	MR1 Overf	low Interru	ot Enable bi	it							
	1 = Enable	s the TMR1	overflow i	nterrupt								
	0 = Disable	s the TMR	1 overflow	interrupt								

4.2.2.5 PIR1 REGISTER

Applicable Devices
61 62 62A R62 63 64 64A R64 65 65A

This register contains the individual flag bits for the peripheral interrupts.

Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

FIGURE 4-15: PIR1 REGISTER FOR PIC16C62/62A/R62 (ADDRESS 0Ch)

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	_	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	R = Readable bit			
oit7							bit0	W = Writable bitU = Unimplemented bit, read as '0'n = Value at POR reset			
bit 7-6:	Reserved:	Reserved: Always maintain these bits clear.									
bit 5-4:	Unimpleme	ented: Rea	ıd as '0'								
bit 3:	SSPIF : Synchronous Serial Port Interrupt Flag bit (must be cleared in software) 1 = The transmission/reception is complete 0 = Waiting to transmit/receive										
bit 2:	CCP1IF: CCP1 Interrupt Flag bit Capture Mode 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare Mode 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM Mode Unused in this mode										
bit 1:	TMR2IF: TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred										
bit 0:	TMR1IF : TM 1 = TMR1 r 0 = No TMF	egister ove	rflow occu	rred (must b	oe cleared in	software)					

Note:

FIGURE 4-16: PIR1 REGISTER FOR PIC16C63 (ADDRESS 0Ch)

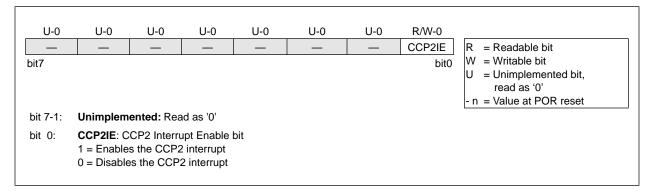
R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0						
— bit7	_	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF bit0	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset					
bit 7-6:	Reserved:	Reserved: Always maintain these bits clear.											
bit 5:	RCIF: USA 1 = The US 0 = The US	SART receiv	e buffer is	full									
bit 4:	1 = The US	TXIF: USART Transmit Interrupt Flag bit 1 = The USART transmit buffer is full 0 = The USART transmit buffer is empty											
bit 3:	SSPIF: Synchronous Serial Port Interrupt Flag bit (must be cleared in software) 1 = The transmission/reception is complete 0 = Waiting to transmit/receive												
bit 2:	CCP1IF: CCP1 Interrupt Flag bit Capture Mode 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare Mode 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM Mode Unused in this mode												
bit 1:	TMR2IF: TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred												
bit 0:	TMR1IF: TMR1 Overflow Interrupt Flag bit 1 = TMR1 register overflow occurred (must be cleared in software) 0 = No TMR1 register overflow occurred												

FIGURE 4-17: PIR1 REGISTER FOR PIC16C64/64A/R64 (ADDRESS 0Ch)

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
PSPIF	_	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	R = Readable bit		
bit7							bit0	W = Writable bitU = Unimplemented bit, read as '0'n = Value at POR reset		
bit 7:	PSPIF: Par 1 = A read 0 = No read	or a write o	peration ha	s taken pla	ce (must be	cleared in s	oftware)			
bit 6:	Reserved:	Always ma	intain this I	oit clear.						
bit 5-4:	Unimplem	ented: Rea	nd as '0'							
bit 3:	1 = The tra 0 = Waiting	SSPIF : Synchronous Serial Port Interrupt Flag bit (must be cleared in software) 1 = The transmission/reception is complete 0 = Waiting to transmit/receive								
bit 2:	CCP1IF: CCP1 Interrupt Flag bit Capture Mode 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare Mode 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM Mode Unused in this mode									
bit 1:	TMR2IF: TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred									
bit 0:	TMR1IF : TI 1 = TMR1 r 0 = No TMF	egister ove	erflow occu	•	oe cleared in	software)				

FIGURE 4-18: PIR1 REGISTER FOR PIC16C65/65A (ADDRESS 0Ch)

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	_	B 111 12			
PSPIF oit7	_	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF bit0	U	= Readable bit = Writable bit = Unimplemented bit, read as '0' = Value at POR reset			
oit 7:	PSPIF: Par 1 = A read 0 = No read	or a write o	peration ha	s taken pla	ce (must be	cleared in s	oftware)					
bit 6:	Reserved:	Always ma	intain this	oit clear.								
bit 5:	1 = The US	RCIF: USART Receive Interrupt Flag bit 1 = The USART receive buffer is full 0 = The USART receive buffer is empty										
bit 4:	1 = The US	TXIF: USART Transmit Interrupt Flag bit 1 = The USART transmit buffer is full 0 = The USART transmit buffer is empty										
bit 3:	SSPIF: Synchronous Serial Port Interrupt Flag bit (must be cleared in software) 1 = The transmission/reception is complete 0 = Waiting to transmit/receive											
bit 2:	CCP1IF: CCP1 Interrupt Flag bit Capture Mode 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare Mode 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM Mode Unused in this mode											
bit 1:	TMR2IF: TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred											
bit 0:	TMR1IF : TI 1 = TMR1 r 0 = No TMI	egister ove	rflow occu	rred (must b	oe cleared in	software)						

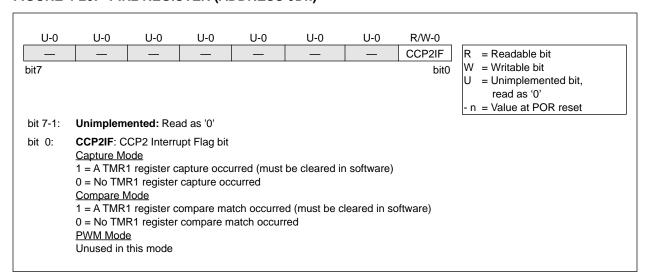

PIC16C6X

4.2.2.6 PIE2 REGISTER

Applicable Devices
61 62 62A R62 63 64 64A R64 65 65A

This register contains the CCP2 interrupt enable bit.

FIGURE 4-19: PIE2 REGISTER (ADDRESS 8Dh)


4.2.2.7 PIR2 REGISTER

Applicable Devices
61 62 62A R62 63 64 64A R64 65 65A

This register contains the CCP2 interrupt flag bit.

Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

FIGURE 4-20: PIR2 REGISTER (ADDRESS 0Dh)

Note:

4.2.2.8 PCON REGISTER

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The Power Control register (PCON) contains a flag bit to allow differentiation between a Power-on Reset to an external $\overline{\text{MCLR}}$ reset or WDT reset. The PIC16C62A/ R62/63/64A/R64/65A contains an additional bit to differentiate a Brown-out Reset condition from a Power-on Reset condition.

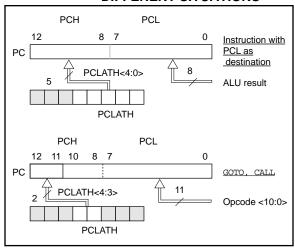
BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent resets to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

FIGURE 4-21: PCON REGISTER FOR PIC16C62/64/65 (ADDRESS 8Eh)

U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-q **POR** = Readable bit W = Writable bit bit7 bit0 = Unimplemented bit, read as '0' n = Value at POR reset = value depends on conditions bit 7-2: Unimplemented: Read as '0' bit 1: POR: Power-on Reset Status bit 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs) bit 0: Reserved This bit should be set upon a Power-on Reset by user software and maintained as set. Use of this bit as a general purpose read/write bit is not recommended, since this may affect upward compatibility with future products.

Note:

FIGURE 4-22: PCON REGISTER FOR PIC16C62A/R62/63/64A/R64/65A (ADDRESS 8Eh)


U-0 U-0 U-0 R/W-0 R/W-q U-0 U-0 U-0 **POR** BOR = Readable bit W = Writable bit bit7 bit0 = Unimplemented bit, read as '0' n = Value at POR reset = value depends on conditions bit 7-2: Unimplemented: Read as '0' POR: Power-on Reset Status bit bit 1: 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs) bit 0: BOR: Brown-out Reset Status bit 1 = No Brown-out Reset occurred 0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

4.3 PCL and PCLATH

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any reset, the high byte of the PC is cleared. Figure 4-23 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 4-23: LOADING OF PC IN DIFFERENT SITUATIONS

4.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note "Implementing a Table Read" (AN556).

4.3.2 STACK

The PIC16CXX family has an 8 deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or a POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- Note 1: There are no status bits to indicate stack overflows or stack underflow conditions.
- Note 2: There are no instructions mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW, and RETFIE instructions, or the vectoring to an interrupt address

4.4 Program Memory Paging

Applicable Devices 61 62 62 A R62 63 64 64 A R64 65 65 A

The PIC16C63/65/65A devices have 4K of program memory, but the CALL and GOTO instructions only have an 11-bit address range. This 11-bit address range allows a branch within a 2K program memory page size. To allow CALL and GOTO instructions to address the entire 4K program memory address range, there must be another bit to specify the program memory page. This paging bit comes from the PCLATH<3> bit (Figure 4-23). When doing a CALL or GOTO instruction, the user must ensure that this page select bit (PCLATH<3>) is programmed so that the desired program memory page is addressed. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is pushed onto the stack. Therefore, manipulation of the PCLATH<3> bit is not required for the return instructions (which POPs the address from the stack).

Note: The PIC16C6X ignores the PCLATH<4>
bit, which is used for program memory pages 2 and 3 (1000h - 1FFFh). The use of PCLATH<4> as a general purpose read/ write bit is not recommended since this

may affect upward compatibility with future products.

Devices with 2K or less program memory ignore the PCLATH<3> bit, which is used for program memory page 1 (0800h-0FFFh). The use of PCLATH<3> as a general purpose read/write bit for these devices is not recommended since this may affect upward compatibility with future products.

Example 4-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that the PCLATH is saved and restored by the interrupt service routine (if interrupts are used).

EXAMPLE 4-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

```
ORG 0x500
BSF PCLATH,3 ;Select page 1 (800h-FFFh)
CALL SUB1_P1 ;Call subroutine in
: ;page 1 (800h-FFFh)
:
:
ORG 0x900
SUB1_P1: ;called subroutine
: ;page 1 (800h-FFFh)
:
RETURN ;return to Call subroutine
;in page 0 (000h-7FFh)
```

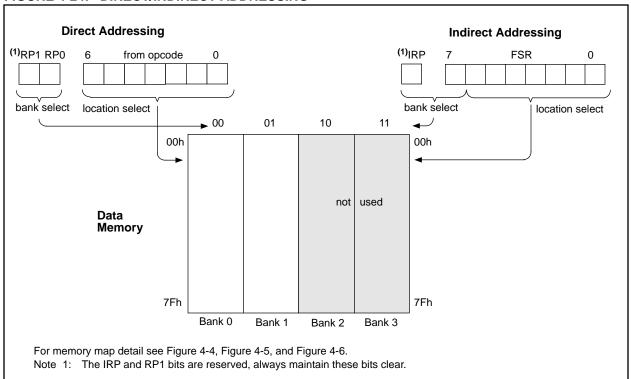
4.5 <u>Indirect Addressing, INDF and FSR</u> <u>Registers</u>

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself indirectly (FSR = '0') will produce 00h. Writing to the INDF register indirectly results in a no-operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-24. However, IRP is not used in the PIC16C6X.

A simple program to clear RAM location 20h-2Fh using indirect addressing is shown in Example 4-2.


EXAMPLE 4-2: INDIRECT ADDRESSING

movlw 0x20 ;initialize pointer
movwf FSR ; to RAM

NEXT clrf INDF ;clear INDF register
incf FSR,F ;inc pointer
btfss FSR,4 ;all done?
goto NEXT ;NO, clear next

CONTINUE
: ;YES, continue

FIGURE 4-24: DIRECT/INDIRECT ADDRESSING

5.0 I/O PORTS

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

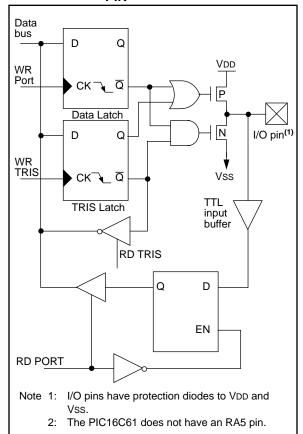
5.1 PORTA and TRISA Register

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

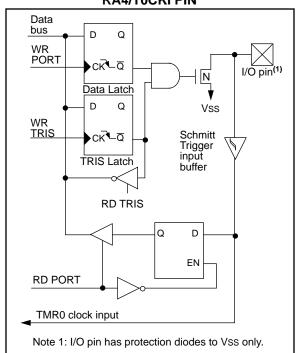
All devices have a 6-bit wide PORTA, except for the PIC16C61 which has a 5-bit wide PORTA.

Pin RA4/T0CKI is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers) which can configure these pins as output or input.

Setting a bit in the TRISA register puts the corresponding output driver in a hi-impedance mode. Clearing a bit in the TRISA register puts the contents of the output latch on the selected pin.


Reading PORTA register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefor, a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch

Pin RA4 is multiplexed with Timer0 module clock input to become the RA4/T0CKI pin.


EXAMPLE 5-1: INITIALIZING PORTA

CLRE PORTA ; Initialize PORTA by ; clearing output ; data latches BSF STATUS, RPO ; Select Bank 1 MOVLW 0xCF ; Value used to ; initialize data ; direction ; Set RA<3:0> as inputs MOVWF TRISA ; RA<5:4> as outputs ; TRISA<7:6> are always ; read as 'O'.

FIGURE 5-1: BLOCK DIAGRAM OF THE RA3:RA0 PINS AND THE RA5 PIN

FIGURE 5-2: BLOCK DIAGRAM OF THE RA4/T0CKI PIN

PIC16C6X

TABLE 5-1: PORTA FUNCTIONS

Name	Bit#	Buffer Type	Function
RA0	bit0	TTL	Input/output
RA1	bit1	TTL	Input/output
RA2	bit2	TTL	Input/output
RA3	bit3	TTL	Input/output
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0. Output is open drain type.
RA5/ SS (1)	bit5	TTL	Input/output or slave select input for synchronous serial port.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: The PIC16C61 does not have PORTA<5> or TRISA<5>, read as '0'.

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
05h	PORTA	_	_	RA5 ⁽¹⁾	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
85h	TRISA	_	_	TRISA5 ⁽¹⁾	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note 1: PORTA<5> and TRISA<5> are not implemented on the PIC16C61, read as '0'.

5.2 PORTB and TRISB Register

Applicable Devices 61 62 62 A R62 63 64 64 A R64 65 65 A

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a bit in the TRISB register puts the corresponding output driver in a hi-impedance mode. Clearing a bit in the TRISB register puts the contents of the output latch on the selected pin(s).

EXAMPLE 5-2: INITIALIZING PORTB

CLRF PORTB ; Initialize PORTB by ; clearing output ; data latches BSF STATUS, RPO ; Select Bank 1 MOVLW ; Value used to 0xCF ; initialize data ; direction MOVWF TRISB ; Set RB<3:0> as inputs ; RB<5:4> as outputs ; RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (OPTION<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are also disabled on a Power-on Reset.

Four of PORTB's pins, RB7:RB4, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB port change interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition, and allow flag bit RBIF to be cleared.

This interrupt on mismatch feature, together with soft-ware configurable pull-ups on these four pins allow easy interface to a keypad and make it possible for wake-up on key-depression. Refer to the Embedded Control Handbook, Application Note, "Implementing Wake-up on Key Stroke" (AN552).

Note: For PIC16C61/62/64/65, if a change on the I/O pin should occur when a read operation is being executed (start of the Q2 cycle), then interrupt flag bit RBIF may not get set.

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

FIGURE 5-3: BLOCK DIAGRAM OF THE RB7:RB4 PINS FOR PIC16C61/62/64/65

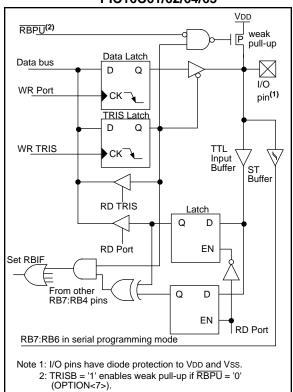


FIGURE 5-4: BLOCK DIAGRAM OF THE RB7:RB4 PINS FOR PIC16C62A/63/64A/65A

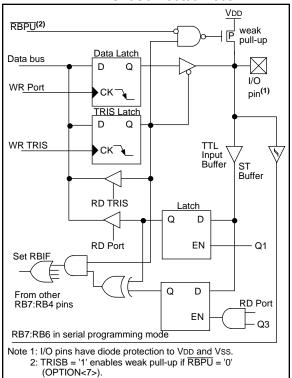


FIGURE 5-5: BLOCK DIAGRAM OF THE RB3:RB0 PINS

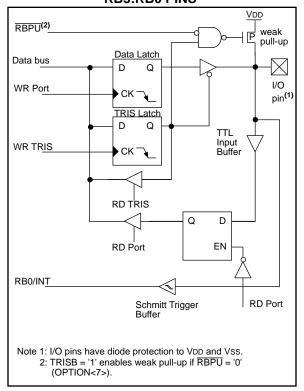


TABLE 5-3: PORTB FUNCTIONS

Name	Bit#	Buffer Type	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

TABLE 5-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuuu
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
81h	OPTION	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

5.3 PORTC and TRISC Register

Applicable Devices61 62 62A R62 63 64 64A R64 65 65A

PORTC is an 8-bit bi-directional port. Each pin is individually configurable as an input or output through the TRISC register. PORTC is multiplexed with several peripheral functions (Table 5-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override is in effect while the peripheral is enabled, read-modify-write instructions (BSF, BCF, XORWF) with TRISC as destination should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

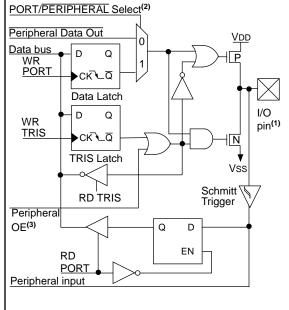
EXAMPLE 5-3: INITIALIZING PORTC

CLRF PORTC ; Initialize PORTC by

; clearing output

; data latches

BSF STATUS, RPO ; Select Bank 1 MOVLW OxCF ; Value used to


; initialize data

; direction

MOVWF TRISC ; Set RC<3:0> as inputs

; RC<5:4> as outputs
; RC<7:6> as inputs

FIGURE 5-6: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)

- Note 1: I/O pins have diode protection to VDD and Vss.
 - 2: Port/Peripheral select signal selects between port data and peripheral output.
 - 3: Peripheral OE (output enable) is only activated if peripheral select is active.

TABLE 5-5: PORTC FUNCTIONS FOR PIC16C62/64

Name	Bit#	Buffer Type	Function
RC0/T1OSI/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator input or Timer1 clock input
RC1/T1OSO	bit1	ST	Input/output port pin or Timer1 oscillator output
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/PWM1 output
RC3/SCK/SCL	bit3	ST	RC3/SCK/SCL can also be selected as the synchronous serial clock for both SPI and I ² C modes.
RC4/SDI/SDA	bit4	ST	RC4/SDI/SDA can also be selected as the SPI Data In (SPI mode) or data I/O ($\rm I^2C$ mode).
RC5/SDO	bit5	ST	Input/output port pin or synchronous serial port data output
RC6	bit6	ST	Input/output port pin
RC7	bit7	ST	Input/output port pin

Legend: ST = Schmitt Trigger input

TABLE 5-6: PORTC FUNCTIONS FOR PIC16C62A/R62/64A/R64

Name	Bit#	Buffer Type	Function
RC0/T1OSO/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator output or Timer1 clock input
RC1/T1OSI	bit1	ST	Input/output port pin or Timer1 oscillator input
RC2/CCP1	bit2	ST	Input/output port pin or Capture input/Compare output/PWM1 output
RC3/SCK/SCL	bit3	ST	RC3/SCK/SCL can also be selected as the synchronous serial clock for both SPI and I ² C modes.
RC4/SDI/SDA	bit4	ST	RC4/SDI/SDA can also be selected as the SPI Data In (SPI mode) or data I/O ($\rm I^2C$ mode).
RC5/SDO	bit5	ST	Input/output port pin or synchronous serial port data output
RC6	bit6	ST	Input/output port pin
RC7	bit7	ST	Input/output port pin

Legend: ST = Schmitt Trigger input

TABLE 5-7: PORTC FUNCTIONS FOR PIC16C63/65/65A

Name	Bit#	Buffer Type	Function
RC0/T1OSO/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator output or Timer1 clock input
RC1/T1OSI/CCP2	bit1	ST	Input/output port pin or Timer1 oscillator input or Capture2 input/Compare2 output/PWM2 output
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/PWM1 output
RC3/SCK/SCL	bit3	ST	RC3/SCK/SCL can also be selected as the synchronous serial clock for both SPI and I ² C modes.
RC4/SDI/SDA	bit4	ST	RC4/SDI/SDA can also be selected as the SPI Data In (SPI mode) or data I/O (I^2C mode).
RC5/SDO	bit5	ST	Input/output port pin or synchronous serial port data output
RC6/TX/CK	bit6	ST	Input/output port pin or USART Asynchronous Transmit, or USART Synchronous Clock
RC7/RX/DT	bit7	ST	Input/output port pin or USART Asynchronous Receive, or USART Synchronous Data

Legend: ST = Schmitt Trigger input

TABLE 5-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
87h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged.

5.4 PORTD and TRISD Register

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configurable as input or output.

PORTD can be configured as an 8-bit wide microprocessor port (parallel slave port) by setting control bit PSPMODE (TRISE<4>). In this mode, the input buffers are TTL.

FIGURE 5-7: PORTD BLOCK DIAGRAM (IN I/O PORT MODE)

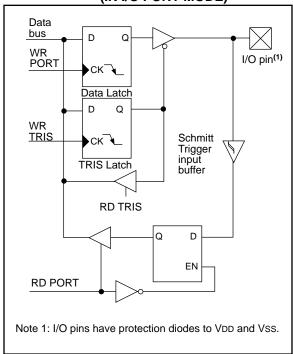


TABLE 5-9: PORTD FUNCTIONS

Name	Bit#	Buffer Type	Function
RD0/PSP0	bit0	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit0
RD1/PSP1	bit1	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit1
RD2/PSP2	bit2	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit2
RD3/PSP3	bit3	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit3
RD4/PSP4	bit4	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit4
RD5/PSP5	bit5	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit5
RD6/PSP6	bit6	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit6
RD7/PSP7	bit7	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit7

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Buffer is a Schmitt Trigger when in I/O mode, and a TTL buffer when in Parallel Slave Port mode.

TABLE 5-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
08h	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
88h	TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111	1111 1111
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTD.

5.5 **PORTE and TRISE Register**

Applicable Devices
61 62 62A R62 63 64 64A R64 65 65A

PORTE has three pins, RE2/ $\overline{\text{CS}}$, RE1/ $\overline{\text{WR}}$, and RE0/ $\overline{\text{RD}}$ which are individually configurable as inputs or outputs. These pins have Schmitt Trigger input buffers.

I/O PORTE becomes control inputs for the microprocessor port when bit PSPMODE (TRISE<4>) is set. In this mode, the user must make sure that the TRISE<2:0> bits are set (pins are configured as digital inputs). In this mode the input buffers are TTL.

Figure 5-9 shows the TRISE register, which also controls the parallel slave port operation.

TRISE controls the direction of the RE pins.

FIGURE 5-8: PORTE BLOCK DIAGRAM (IN I/O PORT MODE)

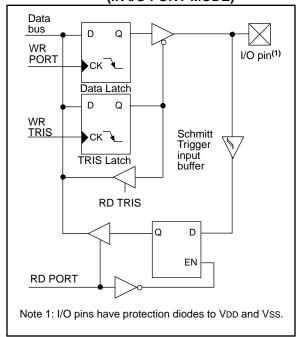


FIGURE 5-9: TRISE REGISTER (ADDRESS 89h)

R-0	R-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1	
IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7 :	IBF: Input 1 = A word 0 = No wor	has been	received and i	s waiting t	o be read by	the CPU		
bit 6:	1 = The ou	tput buffer	Full Status bit still holds a pr has been read	•	ritten word			
bit 5:		occurred					(must be clea	ared in software)
bit 4:	PSPMODE 1 = Paralle 0 = Genera	l slave por		de Select I	oit			
bit 3:	Unimplem	ented: Re	ad as '0'					
bit 2:	TRISE2 : D 1 = Input 0 = Output		ontrol bit for pir	n RE2/CS				
bit 1:	TRISE1: D 1 = Input 0 = Output		ontrol bit for pir	n RE1/WR				
bit 0:	TRISE0 : D 1 = Input 0 = Output		ontrol bit for pir	n RE0/RD				

TABLE 5-11: PORTE FUNCTIONS

Name	Bit#	Buffer Type	Function
RE0/RD	bit0	ST/TTL ⁽¹⁾	Input/output port pin or Read control input in parallel slave port mode. RD 1 = Not a read operation 0 = Read operation. The system reads the PORTD register (if chip selected)
RE1/WR	bit1	ST/TTL ⁽¹⁾	Input/output port pin or Write control input in parallel slave port mode. WR 1 = Not a write operation 0 = Write operation. The system writes to the PORTD register (if chip selected)
RE2/CS	bit2	ST/TTL ⁽¹⁾	Input/output port pin or Chip select control input in parallel slave port mode. CS 1 = Device is not selected 0 = Device is selected

Legend: ST = Schmitt Trigger input, TTL = TTL input
Note 1: Buffer is a Schmitt Trigger when in I/O mode, and a TTL buffer when in Parallel Slave Port (PSP) mode.

SUMMARY OF REGISTERS ASSOCIATED WITH PORTE **TABLE 5-12:**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
09h	PORTE	_	_	_	_	_	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells not used by PORTE.

5.6 <u>I/O Programming Considerations</u>

Applicable Devices 61 62 62 A R62 63 64 64 A R64 65 65 A

5.6.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the content of the data latch may now be unknown.

Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-4 shows the effect of two sequential read-modify-write instructions on an I/O port.

EXAMPLE 5-4: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial PORT settings: PORTB<7:4> Inputs PORTB<3:0> Outputs ;PORTB<7:6> have external pull-ups and are ;not connected to other circuitry PORT latch PORT pins BCF PORTB, 7 ; 01pp pppp 11pp pppp BCF PORTB, 6 ; 10pp pppp 11pp pppp BSF STATUS, RPO ; BCF TRISB, 7 ; 10pp pppp 11pp pppp BCF TRISB, 6 ; 10pp pppp 10pp pppp ;Note that the user may have expected the ;pin values to be 00pp pppp. The 2nd BCF ; caused RB7 to be latched as the pin value

;(high).

A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

5.6.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-10). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

5.7 Parallel Slave Port

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

PORTD operates as an 8-bit wide parallel slave port, or microprocessor port when control bit PSPMODE (TRISE<4>) is set. In slave mode it is asynchronously readable and writable by the external world through \overline{RD} control input (RE0/ \overline{RD}) and \overline{WR} control input pin (RE1/ \overline{WR}).

It can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting PSPMODE enables port pin RE0/ \overline{RD} to be the \overline{RD} input, RE1/ \overline{WR} to be the \overline{WR} input and RE2/ \overline{CS} to be the \overline{CS} (chip select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set).

There are actually two 8-bit latches, one for data-out (from the PIC16/17) and one for data input. The user writes 8-bit data to PORTD data latch and reads data from the port pin latch (note that they have the same address). In this mode, the TRISD register is ignored since the microprocessor is controlling the direction of data flow.

Input Buffer Full Status Flag bit IBF (TRISE<7>) is set if a received word is waiting to be read by the CPU. Once the PORTD input latch is read, bit IBF is cleared. IBF is a read only status bit. Output Buffer Full Status Flag bit OBF (TRISE<6>) is set if a word written to PORTD latch is waiting to be read by the external bus. Once the PORTD output latch is read by the microprocessor, bit OBF is cleared. Input Buffer Overflow Status flag bit IBOV (TRISE<5>) is set if a second write to the microprocessor port is attempted when the previous word has not been read by the CPU (the first word is retained in the buffer).

When not in Parallel Slave Port mode, bits IBF (TRISE<7>) and OBF (TRISE<6>) are held clear. However if flag bit IBOV (TRISE<5>) was previously set, it must be cleared in software.

An interrupt is generated and latched into flag bit PSPIF (PIR1<7>) when a read or a write operation is completed. Flag bit PSPIF must be cleared by user software and the interrupt can be disabled by clearing the interrupt enable bit PSPIE (PIE1<7>).

FIGURE 5-11: PORTD AND PORTE AS A PARALLEL SLAVE PORT

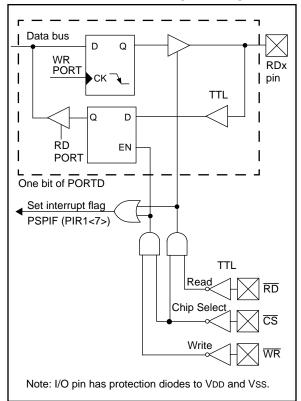


TABLE 5-13: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
08h	PORTD	PSP7	PSP6	PSP5	PSP4	PSP3	PSP2	PSP1	PSP0	xxxx xxxx	uuuu uuuu
09h	PORTE	_	_	_	_	_	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111
0Ch	PIR1	PSPIF	(1)	RCIF ⁽²⁾	TXIF ⁽²⁾	SSPIF	CCP1IF	TMR2IF	TRM1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE	(1)	RCIE ⁽²⁾	TXIE ⁽²⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by the PSP.

Note 1: These bits are reserved, always maintain these bits clear.

2: These bits are implemented on the PIC16C63/65/65A only.

PIC16C6X

NOTES:

6.0 OVERVIEW OF TIMER MODULES

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

All PIC16C6X devices have three timer modules except for the PIC16C61, which has one timer module. Each module can generate an interrupt to indicate that an event has occurred (i.e., timer overflow). Each of these modules are detailed in the following sections. The timer modules are:

- Timer0 module (Section 7.0)
- Timer1 module (Section 8.0)
- Timer2 module (Section 9.0)

6.1 <u>Timer0 Overview</u>

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The Timer0 module (previously known as RTCC) is a simple 8-bit overflow counter. The clock source can be either the internal system clock (Fosc/4) or an external clock. When the clock source is an external clock, the Timer0 module can be selected to increment on either the rising or falling edge.

The Timer0 module also has a programmable prescaler option. This prescaler can be assigned to either the Timer0 module or the Watchdog Timer. Bit PSA (OPTION<3>) assigns the prescaler, and bits PS2:PS0 (OPTION<2:0>) determine the prescaler value. TMR0 can increment at the following rates: 1:1 when the prescaler is assigned to Watchdog Timer, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128, and 1:256.

Synchronization of the external clock occurs after the prescaler. When the prescaler is used, the external clock frequency may be higher then the device's frequency. The maximum frequency is 50 MHz, given the high and low time requirements of the clock.

6.2 <u>Timer1 Overview</u>

Applicable Devices
61 62 62A R62 63 64 64A R64 65 65A

Timer1 is a 16-bit timer/counter. The clock source can be either the internal system clock (Fosc/4), an external clock, or an external crystal. Timer1 can operate as either a timer or a counter. When operating as a counter (external clock source), the counter can either operate synchronized to the device or asynchronously to the device. Asynchronous operation allows Timer1 to operate during sleep, which is useful for applications that require a real-time clock as well as the power savings of SLEEP mode.

TImer1 also has a prescaler option which allows TMR1 to increment at the following rates: 1:1, 1:2, 1:4, and 1:8. TMR1 can be used in conjunction with the Capture/Compare/PWM module. When used with a CCP module, Timer1 is the time-base for 16-bit capture or 16-bit compare and must be synchronized to the device.

6.3 Timer2 Overview

Applicable Devices

61 62 62A R62 63 64 64A R64 65 65A

Timer2 is an 8-bit timer with a programmable prescaler and a programmable postscaler, as well as an 8-bit Period Register (PR2). Timer2 can be used with the CCP module (in PWM mode) as well as the Baud Rate Generator for the Synchronous Serial Port (SSP). The prescaler option allows Timer2 to increment at the following rates: 1:1, 1:4, and 1:16.

The postscaler allows TMR2 register to match the period register (PR2) a programmable number of times before generating an interrupt. The postscaler can be programmed from 1:1 to 1:16 (inclusive).

6.4 CCP Overview

Applicable Devices

61 62 62A R62 63 64 64A R64 65 65A

The CCP module(s) can operate in one of three modes: 16-bit capture, 16-bit compare, or up to 10-bit Pulse Width Modulation (PWM).

Capture mode captures the 16-bit value of TMR1 into the CCPRxH:CCPRxL register pair. The capture event can be programmed for either the falling edge, rising edge, fourth rising edge, or sixteenth rising edge of the CCPx pin.

Compare mode compares the TMR1H:TMR1L register pair to the CCPRxH:CCPRxL register pair. When a match occurs, an interrupt can be generated and the output pin CCPx can be forced to a given state (High or Low) and Timer1 can be reset. This depends on control bits CCPxM3:CCPxM0.

PWM mode compares the TMR2 register to a 10-bit duty cycle register value as well as to an 8-bit Period Register (PR2). When TMR2 register = PR2 register, the TMR2 register is cleared to 00h, an interrupt may be generated, and the CCPx pin (if an output) will be forced high. When the TMR2 register = Duty Cycle register, the CCPx pin will be forced low.

PIC16C6X

NOTES:

7.0 TIMERO MODULE

Applicable Devices61 62 62A R62 63 64 64A R64 65 65A

The Timer0 module has the following features:

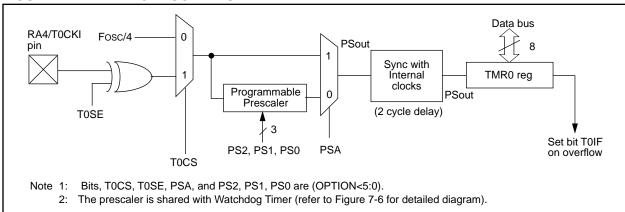
- 8-bit timer/counter register, TMR0
 - Read and write capability
 - Interrupt on overflow from FFh to 00h
- 8-bit software programmable prescaler
- · Internal or external clock select
 - Edge select for external clock

Figure 7-1 is a simplified block diagram of the Timer0 module.

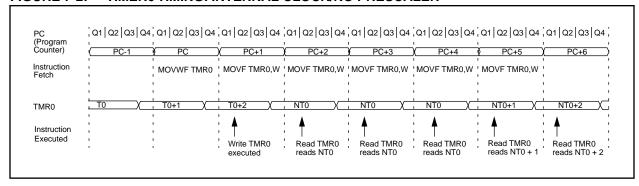
Timer mode is selected by clearing bit TOCS (OPTION<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If TMR0 register is written, the increment is inhibited for the following two instruction cycles (Figure 7-2 and Figure 7-3). The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting bit T0CS. In this mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the source edge select bit T0SE

(OPTION<4>). Clearing bit T0SE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 7.2.

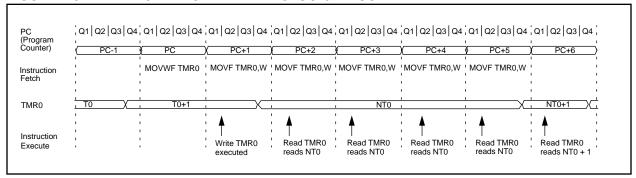

The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by control bit PSA (OPTION<3>). Clearing bit PSA will assign the prescaler to the Timer0 module. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable. Section 7.3 details the operation of the prescaler.

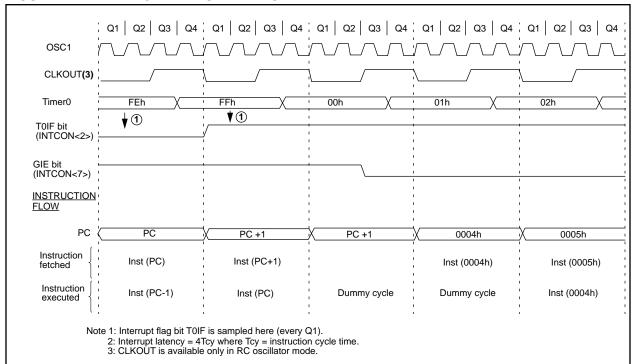
7.1 <u>Timer0 Interrupt</u>


Applicable Devices 61 62 62 A R62 63 64 64 A R64 65 65 A

The TMR0 interrupt is generated when the register (TMR0) overflows from FFh to 00h. This overflow sets interrupt flag bit T0IF (INTCON<2>). The interrupt can be masked by clearing enable bit T0IE (INTCON<5>). Flag bit T0IF must be cleared in software by the TImer0 interrupt service routine before re-enabling this interrupt. The TMR0 interrupt cannot wake the processor from SLEEP since the timer is shut off during SLEEP. Figure 7-4 displays the Timer0 interrupt timing.

FIGURE 7-1: TIMERO BLOCK DIAGRAM


FIGURE 7-2: TIMERO TIMING: INTERNAL CLOCK/NO PRESCALER


© 1996 Microchip Technology Inc.

DS30234C_1-page 61

FIGURE 7-3: TIMERO TIMING: INTERNAL CLOCK/PRESCALE 1:2

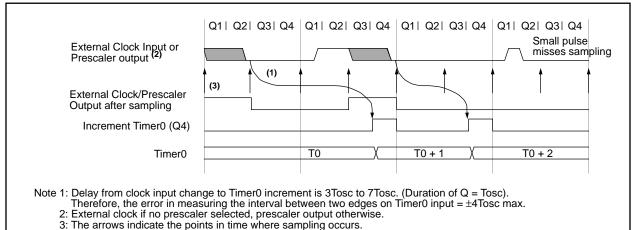
FIGURE 7-4: TIMERO INTERRUPT TIMING

7.2 <u>Using Timer0 with External Clock</u>

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

7.2.1 EXTERNAL CLOCK SYNCHRONIZATION


When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 7-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

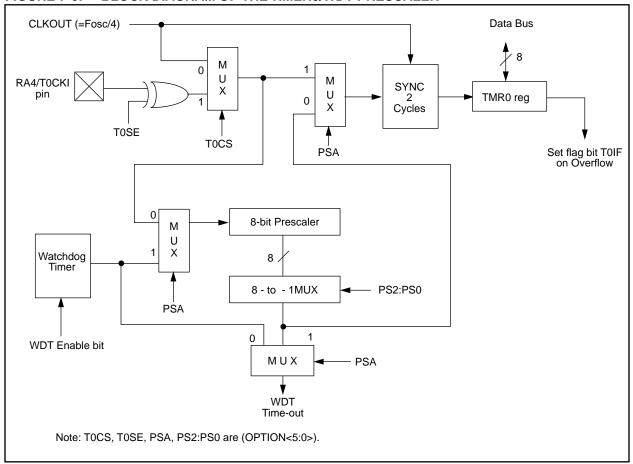
When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for T0CKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on T0CKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

7.2.2 TIMERO INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 7-5 shows the delay from the external clock edge to the timer incrementing.

FIGURE 7-5: TIMERO TIMING WITH EXTERNAL CLOCK

7.3 Prescaler


Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

An 8-bit counter is available as a prescaler for the Timer0 module or as a postscaler for the Watchdog Timer (WDT), respectively (Figure 7-6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that the prescaler may be used by either the Timer0 module or the Watchdog Timer, but not both. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The PSA and PS2:PS0 bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF 1, MOVWF 1, BSF 1,x) will clear the prescaler count. When assigned to Watchdog Timer, a CLRWDT instruction will clear the prescaler count along with the Watchdog Timer. The prescaler is not readable or writable.

FIGURE 7-6: BLOCK DIAGRAM OF THE TIMERO/WDT PRESCALER

7.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control, i.e., it can be changed "on the fly" during program execution.

Note: To avoid an unintended device RESET, the following instruction sequence (shown in Example 7-1) must be executed when changing the prescaler assignment from Timer0 to the WDT. This precaution must be followed even if the WDT is disabled.

EXAMPLE 7-1: CHANGING PRESCALER (TIMER0→WDT)

BCF STATUS, RPO ;Bank 0

CLRF TMR0 ;Clear TMR0 & Prescaler

BSF STATUS, RPO ;Bank 1 CLRWDT ;Clears WDT

MOVLW b'xxxx1xxx' ;Select new prescale

MOVWF OPTION_REG ;value & WDT BCF STATUS, RPO ;Bank 0

To change prescaler from the WDT to the Timer0 module, use the sequence shown in Example 7-2.

EXAMPLE 7-2: CHANGING PRESCALER (WDT→TIMER0)

CLRWDT ;Clear WDT and

;prescaler

BSF STATUS, RPO ;Bank 1

MOVLW b'xxxx0xxx'; Select TMR0, new

;prescale value and

MOVWF OPTION_REG ; clock source

BCF STATUS, RPO ; Bank 0

TABLE 7-1: REGISTERS ASSOCIATED WITH TIMERO

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
01h	TMR0	Timer0	module's r	xxxx xxxx	uuuu uuuu						
0Bh/8Bh	INTCON	GIE	PEIE ⁽¹⁾	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
81h	OPTION	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	_	_	TRISA5 ⁽¹⁾	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111

 $\label{eq:locations} \textbf{Legend:} \quad \textbf{x} = \textbf{unknown}, \ \textbf{u} = \textbf{unchanged}, \ \textbf{-} = \textbf{unimplemented locations read as '0'}. \ \textbf{Shaded cells are not used by Timer0}.$

Note 1: TRISA<5> and bit PEIE are not implemented on the PIC16C61, read as '0'.

PIC16C6X

NOTES:

8.0 TIMER1 MODULE

Applicable Devices 61 | 62 | 62 | R62 | 63 | 64 | 64 | R64 | 65 | 65 |

Timer1 is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L) which are readable and writable. Register TMR1 (TMR1H + TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 Interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing the TMR1 interrupt enable bit TMR1IE (PIE1<0>).

Timer1 can operate in one of two modes:

- · As a timer
- As a counter

The operating mode is determined by clock select bit, TMR1CS (T1CON<1>) (Figure 8-2).

In timer mode, Timer1 increments every instruction cycle. In counter mode, it increments on every rising edge of the external clock input.

Timer1 can be turned on or off using the control bit TMR1ON (T1CON<0>).

Timer1 also has an internal "reset input". This reset can be generated by CCP1 or CCP2 (Capture/Compare/ PWM) module. See Section 10.0 for details. Figure 8-1 shows the Timer1 control register.

For the PIC16C62A/R62/63/64A/R64/65A, when the Timer1 oscillator is enabled (T1OSCEN is set), the RC1 and RC0 pins become inputs. That is, the TRISC<1:0> value is ignored.

For the PIC16C62/64/65, when the Timer1 oscillator is enabled (T1OSCEN is set), RC1 pin becomes an input, however the RC0 pin will have to be configured as an input by setting the TRISC<0> bit.

The Timer1 module also has a software programmable prescaler.

FIGURE 8-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	_	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	R = Readable bit
oit7							bit0	W = Writable bit U = Unimplemented bit read as '0' - n = Value at POR rese
bit 7-6:	Unimplen	nented: Rea	d as '0'					
bit 5-4:	11 = 1:8 P 10 = 1:4 P 01 = 1:2 P	:T1CKPS0: Prescale valu Prescale valu Prescale valu Prescale valu	ie ie ie	ut Clock Pre	escale Seled	ct bits		
bit 3:	1 = Oscilla 0 = Oscilla	I: Timer1 Os ator is enabla ator is shut o oscillator in	ed off			rned off to e	liminate pow	ver drain.
bit 2:	T1SYNC:	Timer1 Exte	rnal Clock	Input Synch	ronization C	Control bit		
		<u>= 1</u> t synchroniz ronize exter		•				
	TMR1CS: This bit is		ner1 uses t	he internal o	lock when 1	TMR1CS = 0).	
			n T1OSI (d		edge) (See	pinouts for p	oin with T1O	SI function)
bit 1:	0 = Interna	ai ciock (Fos	-, -,					

© 1996 Microchip Technology Inc.

DS30234C_1-page 67

8.1 Timer1 Operation in Timer Mode

Applicable Devices61 62 62A R62 63 64 64A R64 65 65A

Timer mode is selected by clearing bit TMR1CS (T1CON<1>). In this mode, the input clock to the timer is Fosc/4. The synchronize control bit $\overline{T1SYNC}$ (T1CON<2>) has no effect since the internal clock is always in sync.

8.2 <u>Timer1 Operation in Synchronized</u> Counter Mode

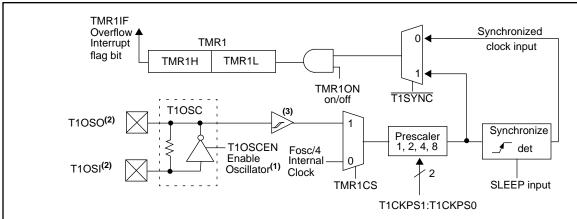
Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

Counter mode is selected by setting bit TMR1CS. In this mode the timer increments on every rising edge of clock input on T1OSI when enable bit T1OSCEN is set or pin with T1CKI when bit T1OSCEN is cleared.

Note: The T1OSI function is multiplexed to different pins, depending on the device. See the pinout descriptions to see which pin has the T1OSI function.

If T1SYNC is cleared, then the external clock input is synchronized with internal phase clocks. The synchronization is done after the prescaler stage. The prescaler stage is an asynchronous ripple counter.

In this configuration, during SLEEP mode, Timer1 will not increment even if an external clock is present, since the synchronization circuit is shut off. The prescaler, however, will continue to increment.


8.2.1 EXTERNAL CLOCK INPUT TIMING FOR SYNCHRONIZED COUNTER MODE

When an external clock input is used for Timer1 in synchronized counter mode, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of TMR1 after synchronization.

When the prescaler is 1:1, the external clock input is the same as the prescaler output. The synchronization of T1CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, it is necessary for T1CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to appropriate electrical specification section, parameters 45, 46, and 47.

When a prescaler other than 1:1 is used, the external clock input is divided by the asynchronous ripple-counter type prescaler so that the prescaler output is symmetrical. In order for the external clock to meet the sampling requirement, the ripple counter must be taken into account. Therefore, it is necessary for T1CKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on T1CKI high and low time is that they do not violate the minimum pulse width requirements of 10 ns). Refer to applicable electrical specification section, parameters 40, 42, 45, 46, and 47.

FIGURE 8-2: TIMER1 BLOCK DIAGRAM

Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.

2: See pinouts for pins with T1OSO and T1OSI functions.

3: For the PIC16C62/64/65, the Schmitt Trigger is not implemented in external clock mode.

8.3 <u>Timer1 Operation in Asynchronous</u> Counter Mode

Applicable Devices									
61	62	62A	R62	63	64	64A	R64	65	65A

If control bit T1SYNC (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during SLEEP and generate an interrupt on overflow which will wake the processor. However, special precautions in software are needed to read-from or write-to the Timer1 register pair, TMR1L and TMR1H (Section 8.3.2).

In asynchronous counter mode, Timer1 cannot be used as a time-base for capture or compare operations.

8.3.1 EXTERNAL CLOCK INPUT TIMING WITH UNSYNCHRONIZED CLOCK

If control bit $\overline{\text{11SYNC}}$ is set, the timer will increment completely asynchronously. The input clock must meet certain minimum high time and low time requirements, as specified in timing parameters (45 - 47).

8.3.2 READING AND WRITING TMR1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L, while the timer is running from an external asynchronous clock, will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself poses certain problems since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. Example 8-1 is an example routine to read the 16-bit timer value. This is useful if the timer cannot be stopped.

EXAMPLE 8-1: READING A 16-BIT FREE-RUNNING TIMER

```
; All Interrupts are disabled
   MOVF
           TMR1H, W
                           ;Read high byte
           TMPH
   MOVWF
   MOVF
           TMR1L, W
                           ;Read low byte
   MOVWF
           TMPL
   MOVF
           TMR1H, W
                           Read high byte
   SUBWF
           TMPH, W
                           ;Sub 1st read
                           ;with 2nd read
   BTFSC
           STATUS, Z
                           ;is result = 0
   GOTO
           CONTINUE
                          ;Good 16-bit read
; TMR1L may have rolled over between the read
; of the high and low bytes. Reading the high
; and low bytes now will read a good value.
   MOVF
           TMR1H, W
                           ;Read high byte
   MOVWF
           TMPH
           TMR1L, W
   MOVF
                           ;Read low byte
   MOVWF
          TMPL
   Re-enable Interrupt (if required)
CONTINUE
                           ;Continue with
                           ;your code
```

8.4 <u>Timer1 Oscillator</u>

Ap	plic	able	Dev	ice	s				
61	62	62A	R62	63	64	64A	R64	65	65A

A crystal oscillator circuit is built in-between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 8-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must allow a software time delay to ensure proper oscillator start-up.

TABLE 8-1: CAPACITOR SELECTION FOR THE TIMER1 OSCILLATOR

C2
F 15 pF F 15 pF pF 0 - 15 pF

Higher capacitance increases the stability of oscillator but also increases the start-up time. These values are for design guidance only.

Note 1: For VDD > 4.5V, C1 = C2 \approx 30 pF is recommended.

Crysta		T4		
L.FVSTA	ıs	1891	ea.	•

_		
32.768 kHz	Epson C-001R32.768K-A	± 20 PPM
100 kHz	Epson C-2 100.00 KC-P	± 20 PPM
200 kHz	STD XTL 200.000 kHz	± 20 PPM

8.5 Resetting Timer1 using a CCP Trigger Output

Applicable Devices
61 62 62A R62 63 64 64A R64 65 65A

CCP2 is implemented on the PIC16C63/65/65A only.

If CCP1 or CCP2 module is configured in Compare mode to generate a "special event trigger" (CCPxM3:CCPxM0 = 1011), this signal will reset Timer1.

Note: The "special event trigger" from the CCP1 and CCP2 modules will not set interrupt flag bit TMR1IF (PIR1<0>).

Timer1 must be configured for either timer or synchronized counter mode to take advantage of this feature. If the Timer1 is running in asynchronous counter mode, this reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1 or CCP2, the write will take precedence.

In this mode of operation, the CCPRxH:CCPRxL registers pair effectively becomes the period register for the Timer1 module.

8.6 Resetting of TMR1 Register Pair (TMR1H + TMR1L)

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The TMR1H and TMR1L registers are not reset on a POR or any other reset except by the CCP1 or CCP2 special event trigger.

T1CON register is reset to 00h on Power-on Reset or a Brown-out Reset. In all other resets, the register is unaffected.

8.7 Timer1 Prescaler

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers

TABLE 8-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
0Eh	0Eh TMR1L Holding register for the Least Significant Byte of the 16-bit TMR1 register								xxxx xxxx	uuuu uuuu	
0Fh	TMR1H	R1H Holding register for the Most Significant Byte of the 16-bit TMR1 register								xxxx xxxx	uuuu uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer1 module.

- Note 1: The USART is implemented on the PIC16C63/65/65A only.
 - 2: Bits PSPIE and PSPIF are reserved on the PIC16C62/62A/R62/63, always maintain these bits clear.
 - 3: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

9.0 TIMER2 MODULE

Applicable Devices
61 62 62A R62 63 64 64A R64 65 65A

Timer2 is an 8-bit timer with a prescaler and a postscaler. It is especially suitable as PWM time-base for PWM mode of CCP module(s). TMR2 is a readable and writable register, and is cleared on any device reset.

The input clock (FOSC/4) has a prescale option of 1:1, 1:4 or 1:16 (selected by control bits T2CKPS1:T2CKPS0 (T2CON<1:0>).

The Timer2 module has an 8-bit period register, PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is set during a reset.

The match output of the TMR2 register goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling, inclusive) to generate a TMR2 interrupt (latched in flag bit TMR2IF (PIR1<1>)).

The Timer2 module can be shut off by clearing control bit TMR2ON (T2CON<2>) to minimize power consumption.

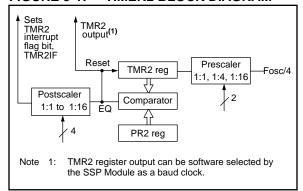
Figure 9-2 shows the Timer2 control register.

9.1 Timer2 Prescaler and Postscaler

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The prescaler and postscaler counters are cleared when any of the following occurs:

- · a write to the TMR2 register
- · a write to the T2CON register
- any device reset (POR, BOR, MCLR Reset, or WDT Reset).


TMR2 register will not clear when T2CON is written, only for a WDT, BOR, POR, and MCLR reset.

9.2 Output of TMR2

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The output of TMR2 (before the postscaler) is fed to the Synchronous Serial Port module which optionally uses it to generate shift clock.

FIGURE 9-1: TIMER2 BLOCK DIAGRAM

FIGURE 9-2: T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	R = Readable bit
oit7 bit 7:	Unimplem	antad: Pag	d as '0'				bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
	•							
bit 6-3:	0000 = 1:1 0001 = 1:2 • 1111 = 1:16	postscale postscale 6 postscale		ipui Postsca	ale Select bi	ıs		
bit 2:	TMR2ON : 7 1 = Timer2 0 = Timer2	is on	oit					
bit 1-0:	T2CKPS1: 00 = 1:1 pre 01 = 1:4 pre 1x = 1:16 p	escale escale	Timer2 Clo	ck Prescale	Select bits			

© 1996 Microchip Technology Inc.

DS30234C_1-page 71

PIC16C6X

TABLE 9-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
0Bh/8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
11h	TMR2 Timer2 module's register									0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
92h	PR2 Timer2 Period register								1111 1111	1111 1111	

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer2.

- Note 1: The USART is implemented on the PIC16C63/65/65A only.
 - 2: Bits PSPIE and PSPIF are reserved on the PIC16C62/62A/R62/63, always maintain these bits clear.
 - 3: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

10.0 CAPTURE/COMPARE/PWM (CCP) MODULE(s)

Applicable Devices										
										CCP1
61	62	62A	R62	63	64	64A	R64	65	65A	CCP2

Each CCP (Capture/Compare/PWM) module contains a 16-bit register which can operate as a 16-bit capture register, as a 16-bit compare register, or as a PWM master/slave duty cycle register. Both the CCP1 and CCP2 modules are identical in operation, with the exception of the operation of the special event trigger. Table 10-1 and Table 10-2 show the resources and interactions of the CCP modules(s). In the following sections, the operation of a CCP module is described with respect to CCP1. CCP2 operates the same as CCP1, except where noted.

CCP1 module:

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

CCP2 module:

Capture/Compare/PWM Register2 (CCPR2) is comprised of two 8-bit registers: CCPR2L (low byte) and CCPR2H (high byte). The CCP2CON register controls the operation of CCP2. All are readable and writable.

For use of the CCP modules, refer to the *Embedded Control Handbook*, "Using the CCP Modules" (AN594).

TABLE 10-1: CCP MODE - TIMER RESOURCE

CCP Mode	Timer Resource				
Capture	Timer1				
Compare	Timer1				
PWM	Timer2				

TABLE 10-2: INTERACTION OF TWO CCP MODULES

CCPx Mode	CCPy Mode	Interaction
Capture	Capture	Same TMR1 time-base.
Capture	Compare	The compare should be configured for the special event trigger, which clears TMR1.
Compare	Compare	The compare(s) should be configured for the special event trigger, which clears TMR1.
PWM	PWM	The PWMs will have the same frequency, and update rate (TMR2 interrupt).
PWM	Capture	None
PWM	Compare	None

FIGURE 10-1: CCP1CON REGISTER (ADDRESS 17h) / CCP2CON REGISTER (ADDRESS 1Dh)

U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CCPxX **CCPxY** CCPxM3 CCPxM2 CCPxM1 CCPxM0 R = Readable bit W = Writable bit bit7 bit0 U = Unimplemented bit, read as '0' - n =Value at POR reset bit 7-6: Unimplemented: Read as '0'

bit 5-4: CCPxX:CCPxY: PWM Least Significant bits

Capture Mode

Unused

Compare Mode

Unused

PWM Mode

These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.

bit 3-0: CCPxM3:CCPxM0: CCPx Mode Select bits

0000 = Capture/Compare/PWM off (resets CCPx module)

0100 = Capture mode, every falling edge

0101 = Capture mode, every rising edge

0110 = Capture mode, every 4th rising edge

0111 = Capture mode, every 16th rising edge

1000 = Compare mode, set output on match (bit CCPxIF is set)

1001 = Compare mode, clear output on match (bit CCPxIF is set)

1010 = Compare mode, generate software interrupt on match (bit CCPxIF is set, CCPx pin is unaffected)

1011 = Compare mode, trigger special event (CCPxIF bit is set; CCP1 resets TMR1; CCP2 resets TMR1)

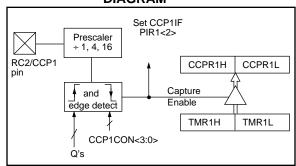
11xx = PWM mode

10.1 Capture Mode

Applicable Devices
61 62 62A R62 63 64 64A R64 65 65A

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RC2/CCP1 (Figure 10-2). An event is defined as:

- · Every falling edge
- · Every rising edge
- · Every 4th rising edge
- Every 16th rising edge


An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

10.1.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting its corresponding TRIS bit.

Note: If the RC2/CCP1 pin is configured as an output, a write to the port can cause a capture condition.

FIGURE 10-2: CAPTURE MODE OPERATION BLOCK DIAGRAM

10.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

10.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep enable bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear flag bit CCP1IF following any such change in operating mode.

10.1.4 CCP PRESCALER

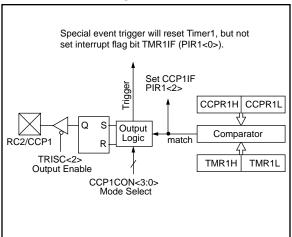
There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. This means that any reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore the first capture may be from a non-zero prescaler. Example 10-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 10-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF CCP1CON ; Turn CCP module off
MOVLW NEW_CAPT_PS ; Load the W reg with
; the new prescaler
; mode value and CCP ON
MOVWF CCP1CON ; Load CCP1CON with
; this value

10.2 Compare Mode


Applicable Devices
61 62 62A R62 63 64 64A R64 65 65A

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is:

- · Driven High
- Driven Low
- · Remains Unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, a compare interrupt is also generated.

FIGURE 10-3: COMPARE MODE OPERATION BLOCK DIAGRAM

10.2.1 CCP PIN CONFIGURATION

The user must configure the RC2/CCP1 pin as an output by clearing the TRISC<2> bit.

Note: Clearing the CCP1CON register will force the RC2/CCP1 compare output latch to the default low level. This is not the data latch.

10.2.1 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

10.2.2 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt is chosen, the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

10.2.3 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated which may be used to initiate an action.

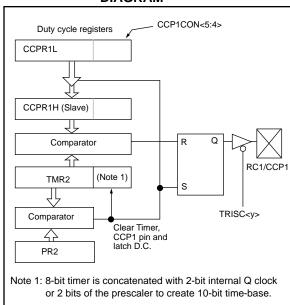
The special event trigger output of CCP1 and CCP2 resets the TMR1 register pair. This allows the CCPR1 and CCPR2 registers to effectively be a 16-bit programmable period register for Timer1.

For compatibility issues, the special event trigger output of CCP2 on <u>PIC16C7X</u> devices also starts an A/D conversion.

Note: The "special event trigger" from the CCP1 and CCP2 modules will not set interrupt flag bit TMR1IF (PIR1<0>).

10.3 PWM Mode

Applicable Devices61 62 62A R62 63 64 64A R64 65 65A


In Pulse Width Modulation (PWM) mode, the CCPx pin produces up to a 10-bit resolution PWM output. Since the CCPx pin is multiplexed with the PORTC data latch, the corresponding TRISC bit must be cleared to make the CCPx pin an output.

Note: Clearing the CCP1CON register will force the CCP1 PWM output latch to the default low level. This is not the PORTC I/O data latch.

Figure 10-4 shows a simplified block diagram of the CCP module in PWM mode.

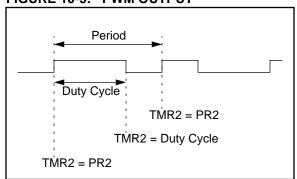

For a step by step procedure on how to set up the CCP module for PWM operation, see Section 10.3.3.

FIGURE 10-4: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 10-5) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

FIGURE 10-5: PWM OUTPUT

10.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur:

· TMR2 is cleared

Note:

- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

The Timer2 postscaler (see Section 9.1) is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output.

10.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available: the CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle:

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2 concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

Maximum PWM resolution (bits) for a given PWM frequency:

$$= \frac{\log\left(\frac{FOSC}{FPWM}\right)}{\log(2)} \quad \text{bits}$$

Note: If the PWM duty cycle value is longer than the PWM period (PWM duty cycle = 100%), the CCP1 pin will not be forced to the low level.

EXAMPLE 10-2: PWM PERIOD AND DUTY CYCLE CALCULATION

Desired PWM frequency is 78.125 kHz, Fosc = 20 MHz TMR2 prescale = 1

> $1/78.125 \text{ kHz} = [(PR2) + 1] \cdot 4 \cdot 1/20 \text{ MHz} \cdot 1$ $12.8 \,\mu\text{s} = [(PR2) + 1] \cdot 4 \cdot 50 \text{ ns} \cdot 1$

PR2 = 63

Find the maximum resolution of the duty cycle that can be used with a 78.125 kHz frequency and 20 MHz oscillator:

 $1/78.125 \text{ kHz} = 2^{PWM \text{ resolution}} \bullet 1/20 \text{ MHz} \bullet 1$

12.8 μ s = $2^{PWM RESOLUTION} \cdot 50 \text{ ns} \cdot 1$

 $256 = 2^{PWM RESOLUTION}$

log(256) = (PWM Resolution) • log(2)

8.0 = PWM Resolution

At most, an 8-bit resolution duty cycle can be obtained from a 78.125 kHz frequency and a 20 MHz oscillator, i.e., $0 \le CCPR1L:CCP1CON<5:4> \le 255$. Any value greater than 255 will result in a 100% duty cycle.

In order to achieve higher resolution, the PWM frequency must be decreased. In order to achieve higher PWM frequency, the resolution must be decreased.

Table 10-3 lists example PWM frequencies and resolutions for Fosc = 20 MHz. TMR2 prescaler and PR2 values are also shown.

10.3.3 SET-UP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- Set the PWM period by writing to the PR2 register.
- Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the appropriate TRISC bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP module for PWM operation.

TABLE 10-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	5.5

TABLE 10-4: REGISTERS ASSOCIATED WITH TIMER1, CAPTURE AND COMPARE

Add	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 0000	0000 000u
0Ch	PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh ⁽⁴⁾	PIR2	_	_	_	_	_	_	_	CCP2IF	0	0
8Ch	PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh ⁽⁴⁾	PIE2	_	_	_	_	_	_	_	CCP2IE	C	0
87h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
0Eh	TMR1L	Holding re	egister fo	the Least	Significant	Byte of the	16-bit TMR	1 register		xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding re	egister for	the Most S	Significant E	Byte of the 1	6-bit TMR	1 register		xxxx xxxx	uuuu uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
15h	CCPR1L	Capture/0	Compare/	PWM1 (LS	B)					xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/0	Compare/	PWM1 (MS	SB)					xxxx xxxx	uuuu uuuu
17h	CCP1CON	CON - CCP1X CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M						CCP1M0	00 0000	00 0000	
1Bh ⁽⁴⁾	CCPR2L	Capture/0	Capture/Compare/PWM2 (LSB)							xxxx xxxx	uuuu uuuu
1Ch ⁽⁴⁾	CCPR2H	Capture/0	Capture/Compare/PWM2 (MSB)								uuuu uuuu
1Dh ⁽⁴⁾	CCP2CON	_	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used in these modes.

- Note 1: These bits are associated with the USART module, which is implemented on the PIC16C63/65/65A only.
 - 2: Bits PSPIE and PSPIF are reserved on the PIC16C62/62A/R62/63, always maintain these bits clear.
 - 3: These bits are reserved, always maintain these bits clear.
 - 4: These registers are associated with the CCP2 module, which is implemented on the PIC16C63/65/65A only.

PIC16C6X

TABLE 10-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value or POR, BOR	n:	Value all of Res	ther
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 00	0x (0000	000u
0Ch	PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 00	00	0000	0000
0Dh ⁽⁴⁾	PIR2	_	_	_	-	_	_	_	CCP2IF		-0 -		0
8Ch	PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 00	00	0000	0000
8Dh ⁽⁴⁾	PIE2	_	_	_	_	_	_	_	CCP2IE		-0 -		0
87h	TRISC	TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0						TRISC0	1111 11	11 1	1111	1111	
11h	TMR2	Timer2 m	odule's reg	ister						0000 00	00	0000	0000
92h	PR2	Timer2 m	odule's Per	iod register						1111 11	11 1	1111	1111
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 00	00 -	-000	0000
15h	CCPR1L	Capture/0	Compare/P\	VM1 (LSB)						xxxx xx	xx ı	uuuu	uuuu
16h	CCPR1H	Capture/0	Compare/P\	WM1 (MSB))					xxxx xx	xx ı	uuuu	uuuu
17h	CCP1CON	- CCP1X CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M						CCP1M0	00 00	00 -	00	0000	
1Bh ⁽⁴⁾	CCPR2L	Capture/0	Capture/Compare/PWM2 (LSB)							xxxx xx	xx ı	uuuu	uuuu
1Ch ⁽⁴⁾	CCPR2H	Capture/0	apture/Compare/PWM2 (MSB)							xxxx xx	xx ı	uuuu	uuuu
1Dh ⁽⁴⁾	CCP2CON	_		CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 00	00 -	00	0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used in this mode.

Note 1: These bits are associated with the USART module, which is implemented on the PIC16C63/65/65A only.

 $^{{\}tt 2:} \quad {\tt Bits\ PSPIE\ and\ PSPIF\ are\ reserved\ on\ the\ PIC16C62/62A/R62/63,\ always\ maintain\ these\ bits\ clear.}$

^{3:} These bits are reserved, always maintain these bits clear.

^{4:} These registers are associated with the CCP2 module, which is implemented on the PIC16C63/65/65A only.

11.0 SYNCHRONOUS SERIAL PORT (SSP) MODULE

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The Synchronous Serial Port (SSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The SSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I2C)

Refer to Application Note AN578, "Use of the SSP Module in the I²C Multi-Master Environment."

FIGURE 11-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0				
_	_	D/Ā	Р	S	R/W	UA	BF	R = Readable bit			
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset			
bit 7-6:	Unimp	olemente	d: Read a	s '0'							
bit 5:	 6: Unimplemented: Read as '0' D/Ā: Data/Address bit (I²C mode only) 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address 										

- bit 4: **P**: Stop bit (I²C mode only. This bit is cleared when the SSP module is disabled, SSPEN is cleared)
 - 1 = Indicates that a stop bit has been detected last (this bit is '0' on RESET)
 - 0 = Stop bit was not detected last
- bit 3: **S**: Start bit (I²C mode only. This bit is cleared when the SSP module is disabled, SSPEN is cleared)
 - 1 = Indicates that a start bit has been detected last (this bit is '0' on RESET)
 - 0 = Start bit was not detected last
- bit 2: $\mathbf{R}/\overline{\mathbf{W}}$: Read/Write bit information (I²C mode only)

This bit holds the R/W bit information following the last address match. This bit is valid from the address match to the next start bit, stop bit, or \overline{ACK} bit.

- 1 = Read
- 0 = Write
- bit 1: **UA**: Update Address (10-bit I²C mode only)
 - 1 = Indicates that the user needs to update the address in the SSPADD register
 - 0 = Address does not need to be updated
- bit 0: **BF**: Buffer Full Status bit

Receive (SPI and I²C modes)

- 1 = Receive complete, SSPBUF is full
- 0 = Receive not complete, SSPBUF is empty

<u>Transmit</u> (I²C mode only)

- 1 = Transmit in progress, SSPBUF is full
- 0 = Transmit complete, SSPBUF is empty

© 1996 Microchip Technology Inc.

FIGURE 11-2: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)

R/W-0								
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	R = Readable bit
bit7							bit0	W = Writable bit
								U = Unimplemented bit,
								read as '0'
								- n =Value at POR reset

bit 7: WCOL: Write Collision Detect bit

1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software)

0 = No collision

bit 6: SSPOV: Receive Overflow Detect bit

In SPI mode

1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR register is lost. Overflow can only occur in slave mode. The user must read the SSPBUF, even if only transmitting data, to avoid setting overflow. In master mode the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register.

0 = No overflow

In I²C mode

1 = A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don't care" in transmit mode. SSPOV must be cleared in software in either mode.

0 = No overflow

bit 5: SSPEN: Synchronous Serial Port Enable bit

In SPI mode

- 1 = Enables serial port and configures SCK, SDO, and SDI as serial port pins
- 0 = Disables serial port and configures these pins as I/O port pins

In I²C mode

- 1 = Enables the serial port and configures the SDA and SCL pins as serial port pins
- 0 = Disables serial port and configures these pins as I/O port pins

In both modes, when enabled, these pins must be properly configured as input or output.

bit 4: CKP: Clock Polarity Select bit

In SPI mode

- 1 = Transmit happens on falling edge, receive on rising edge. Idle state for clock is a high level.
- 0 = Transmit happens on rising edge, receive on falling edge. Idle state for clock is a low level.

In I²C mode

SCK release control

- 1 = Enable clock
- 0 = Holds clock low (clock stretch) (Used to ensure data setup time)

bit 3-0: SSPM3:SSPM0: Synchronous Serial Port Mode Select bits

0000 = SPI master mode, clock = Fosc/4

0001 = SPI master mode, clock = Fosc/16

0010 = SPI master mode, clock = Fosc/64

0011 = SPI master mode, clock = TMR2 output/2

0100 = SPI slave mode, clock = SCK pin. \overline{SS} pin control enabled.

0101 = SPI slave mode, clock = SCK pin. \overline{SS} pin control disabled. \overline{SS} can be used as I/O pin.

 $0110 = I^2C$ slave mode, 7-bit address

 $0111 = I^2C$ slave mode, 10-bit address

 $1011 = I^2C$ start and stop bit interrupts enabled (slave idle)

1110 = I²C slave mode, 7-bit address with start and stop bit interrupts enabled

1111 = I²C slave mode, 10-bit address with start and stop bit interrupts enabled

11.1 SPI Mode

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The SPI mode allows 8-bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, typically three pins are used:

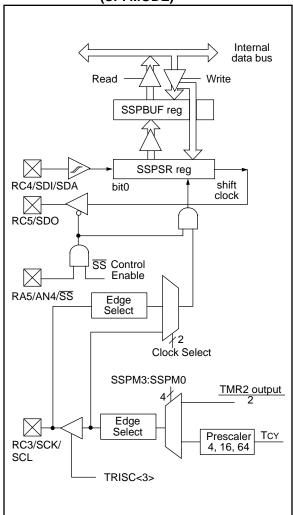
- · Serial Data Out (SDO)
- · Serial Data In (SDI)
- Serial Clock (SCK)

Additionally a fourth pin may be used when in a slave mode of operation:

Slave Select (SS)

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON register (SSPCON<5:0>). These control bits allow the following to be specified:

- Master Mode (SCK is the clock output)
- Slave Mode (SCK is the clock input)
- Clock Polarity (Output/Input data on the Rising/ Falling edge of SCK)
- Clock Rate (Master mode only)
- · Slave Select Mode (Slave mode only)


The SSP consists of a transmit/receive Shift Register (SSPSR) and a Buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR. until the received data is ready. Once the 8-bits of data have been received, that byte is moved to the SSPBUF register. Then the Buffer Full bit, BF (SSPSTAT<0>) and flag bit SSPIF are set. This double buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored, and the write collision detect bit, WCOL (SSPCON<7>) will be set. User software must clear bit WCOL so that it can be determined if the following write(s) to the SSPBUF completed successfully. When the application software is expecting to receive valid data, the SSPBUF register should be read before the next byte of data to transfer is written to the SSPBUF register. The Buffer Full bit BF (SSPSTAT<0>) indicates when the SSPBUF register has been loaded with the received data (transmission is complete). When the SSPBUF is read, bit BF is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally the SSP Interrupt is used to determine when the transmission/reception has completed. The SSPBUF register must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 11-1 shows the loading of the SSPBUF (SSPSR) register for data transmission. The shaded instruction is only required if the received data is meaningful.

EXAMPLE 11-1: LOADING THE SSPBUF (SSPSR) REGISTER

	BSF	STATUS,	RP0	Specify Bank 1
LOOP	BTFSS	SSPSTAT,	, BF	;Has data been
				received
				;(transmit
				<pre>;complete)?</pre>
	GOTO	LOOP		;No
	BCF	STATUS,	RP0	;Specify Bank 0
	MOVF	SSPBUF,	W	;W reg = contents
				of SSPBUF
	MOVWF	RXDATA		;Save in user RAM
	MOVF	TXDATA,	W	;W reg = contents
				; of TXDATA
	MOVWF	SSPBUF		;New data to xmit

The block diagram of the SSP module, when in SPI mode (Figure 11-3), shows that the SSPSR register is not directly readable or writable, and can only be accessed from addressing the SSPBUF register. Additionally, the SSP status register (SSPSTAT) indicates the various status conditions.

FIGURE 11-3: SSP BLOCK DIAGRAM (SPI MODE)

PIC16C6X

To enable the serial port, SSP enable bit SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear enable bit SSPEN, re-initialize SSPCON register, and then set enable bit SSPEN. This configures the SDI, SDO, SCK, and \overline{SS} pins as serial port pins. For the pins to behave as the serial port function, they must have their data direction bits (in the TRISC register) appropriately programmed. That is:

- SDI must have TRISC<4> set
- SDO must have TRISC<5> cleared
- SCK (Master mode) must have TRISC<3> cleared
- SCK (Slave mode) must have TRISC<3> set
- SS must have TRISA<5> set (if implemented)

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value. An example would be in master mode where you are only sending data (to a display driver), then both SDI and \overline{SS} could be used as general purpose outputs by clearing their corresponding TRIS register bits.

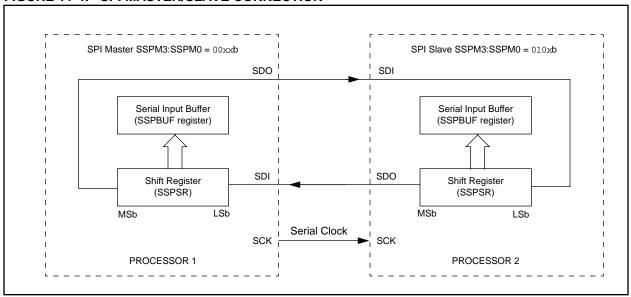
Figure 11-4 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge, and latched on the opposite edge of the clock. Both processors should be programmed to the same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

- Master sends data Slave sends dummy data
- Master sends data Slave sends data
- Master sends dummy data Slave sends data

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2) is to broadcast data by the software protocol.

In master mode the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SCK output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "line activity monitor" mode.

In slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched interrupt flag bit SSPIF (PIR1<3>) is set.


The clock polarity is selected by appropriately programming bit CKP (SSPCON<4>). This then would give waveforms for SPI communication as shown in Figure 11-5 and Figure 11-6 where the MSB is transmitted first. In master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum bit clock frequency (at 20 MHz) of 5 MHz. When in slave mode the external clock must meet the minimum high and low times.

In sleep mode, the slave can transmit and receive data and wake the device from sleep.

The \overline{SS} pin allows a synchronous slave mode. The SPI must be in slave mode (SSPCON<3:0> = 04h) and the TRISA<5> bit must be set the for synchronous slave mode to be enabled. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte, and becomes a floating output. If the SS pin is taken low without resetting SPI mode, the transmission will continue from the point at

which it was taken high. External pull-up/ pull-down resistors may be desirable, depending on the application.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

FIGURE 11-5: SPI MODE TIMING (MASTER MODE OR SLAVE MODE W/O SS CONTROL)

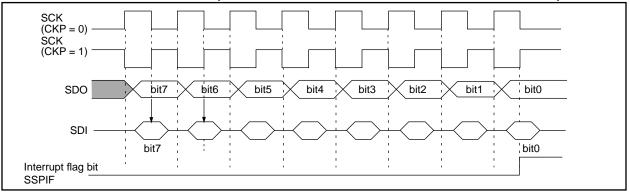


FIGURE 11-6: SPI MODE TIMING (SLAVE MODE WITH SS CONTROL)

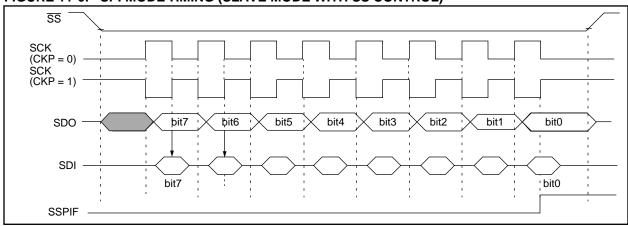


TABLE 11-1: REGISTERS ASSOCIATED WITH SPI OPERATION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
13h	SSPBUF	Synchrono	us Serial	Port Rece	ive Buffer	/Transmit	Register			xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
85h	TRISA	_	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
87h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
94h	SSPSTAT	_	_	D/Ā	Р	S	R/W	UA	BF	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by SSP module in SPI mode.

- Note 1: These bits are associated with the USART which is implemented on the PIC16C63/65/65A only.
 - 2: PSPIF and PSPIE are reserved on the PIC16C62/62A/R62/63, always maintain these bits clear.
 - 3: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

11.2 <u>I ²C Overview</u>

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

This section provides an overview of the Inter-Integrated Circuit (I²C) bus, with Section 11.3 discussing the operation of the SSP module in I²C mode.

The I²C bus is a two-wire serial interface developed by the Philips Corporation. The original specification, or standard mode, was for data transfers of up to 100 Kbps. An enhanced specification, or fast mode, supports data transmission up to 400 Kbps. Both standard mode and fast mode devices will inter-operate if attached to the same bus.

The I²C interface employs a comprehensive protocol to ensure reliable transmission and reception of data. When transmitting data, one device is the "master", which initiates transfer on the bus and generates the clock signals to permit that transfer, while the other device(s) acts as the "slave." All portions of the slave protocol are implemented in the SSP module's hardware, except general call support, while portions of the master protocol need to be addressed in the PIC16CXX software. Table 11-2 defines some of the I²C bus terminology. For additional information on the I²C interface specification, refer to the Philips Corporation document "The I²C bus and how to use it." #939839340011, which can be obtained from the Philips Corporation.

In the I²C interface protocol each device has an address. When a master wishes to initiate a data transfer, it first transmits the address of the device that it wishes to "talk" to. All devices "listen" to see if this is their address. Within this address, a bit specifies if the master wishes to read-from / write-to the slave device. The master and slave are always in opposite modes (transmitter/receiver) of operation during a data transfer. That is they can be thought of operating in either of these two relations:

- · Master-transmitter and Slave-receiver
- · Slave-transmitter and Master-receiver

In both cases the master generates the clock signal.

The output stages of the clock (SCL) and data (SDA) lines must have an open-drain or open-collector in order to perform the wired-AND function of the bus. External pull-up resistors are used to ensure a high level when no device is pulling the line down. The number of devices that may be attached to the I²C bus is limited only by the maximum bus loading specification of 400 pF.

11.2.1 INITIATING AND TERMINATING DATA TRANSFER

During times of no data transfer (idle time), both the clock line (SCL) and the data line (SDA) are pulled high through the external pull-up resistors. The START and STOP conditions determine the start and stop of data transmission. The START condition is defined as a high to low transition of the SDA when the SCL is high. The STOP condition is defined as a low to high transition of the SDA when the SCL is high. Figure 11-7 shows the START and STOP conditions. The master generates these conditions for starting and terminating data transfer. Due to the definition of the START and STOP conditions, when data is being transmitted the SDA line can only change state when the SCL line is low.

FIGURE 11-7: START AND STOP CONDITIONS

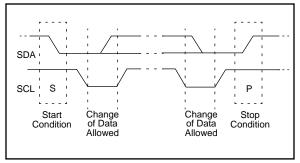


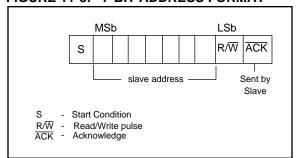
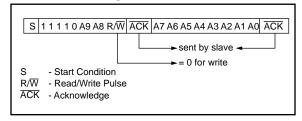
TABLE 11-2: I²C BUS TERMINOLOGY

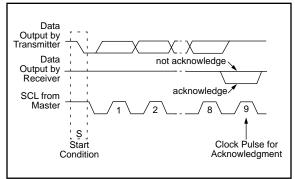
Term	Description
Transmitter	The device that sends the data to the bus.
Receiver	The device that receives the data from the bus.
Master	The device which initiates the transfer, generates the clock and terminates the transfer.
Slave	The device addressed by a master.
Multi-master	More than one master device in a system. These masters can attempt to control the bus at the same time without corrupting the message.
Arbitration	Procedure that ensures that only one of the master devices will control the bus. This ensure that the transfer data does not get corrupted.
Synchronization	Procedure where the clock signals of two or more devices are synchronized.

11.2.2 ADDRESSING I²C DEVICES

There are two address formats. The simplest is the 7-bit address format with a R/\overline{W} bit (Figure 11-8). The more complex is the 10-bit address with a R/\overline{W} bit (Figure 11-9). For 10-bit address format, two bytes must be transmitted with the first five bits specifying this to be a 10-bit address.

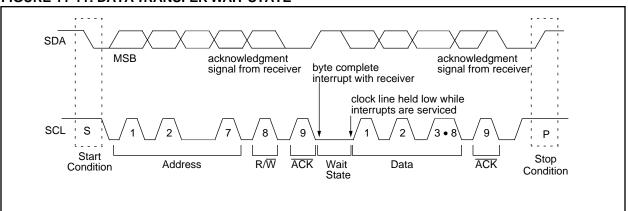
FIGURE 11-8: 7-BIT ADDRESS FORMAT


FIGURE 11-9: I²C 10-BIT ADDRESS FORMAT

11.2.3 TRANSFER ACKNOWLEDGE

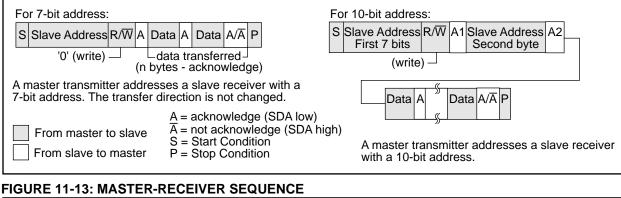
All data must be transmitted per byte, with no limit to the number of bytes transmitted per data transfer. After each byte, the slave-receiver generates an acknowledge bit (\overline{ACK}) (Figure 11-10). When a slave-receiver doesn't acknowledge the slave address or received data, the master must abort the transfer. The slave must leave the SDA line high so that the master can generate the STOP condition (Figure 11-7).

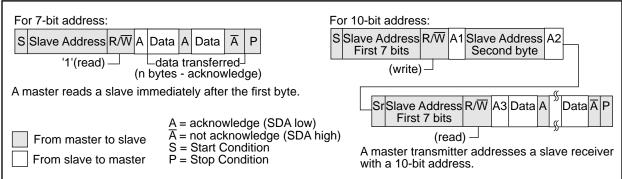

FIGURE 11-10: SLAVE-RECEIVER ACKNOWLEDGE

If the master is receiving the data (master-receiver), it generates an acknowledge signal for each received byte of data, except for the last byte. To signal the end of data to the slave-transmitter, the master does not generate an acknowledge (not acknowledge). The slave then releases the SDA line so the master can generate the STOP condition. The master can also generate the STOP condition during the acknowledge pulse for valid termination of data transfer.

If the slave needs to delay the transmission of the next byte, holding the SCL line low will force the master into a wait state. Data transfer continues when the slave releases the SCL line. This allows the slave to move the received data or fetch the data it needs to transfer before allowing the clock to start. This wait state technique can also be implemented at the bit level, Figure 11-11. The slave will inherently stretch the clock when it is a transmitter but will not when it is a receiver. The slave will have to clear the SSPCON<4> bit to enable clock stretching when it is a receiver.

FIGURE 11-11: DATA TRANSFER WAIT STATE


PIC16C6X


Figure 11-12 and Figure 11-13 show Master-transmitter and Master-receiver data transfer sequences.

When a master does not wish to relinquish the bus (by generating a STOP condition), a repeated START condition (Sr) must be generated. This condition is identical to the start condition (SDA goes high-to-low while

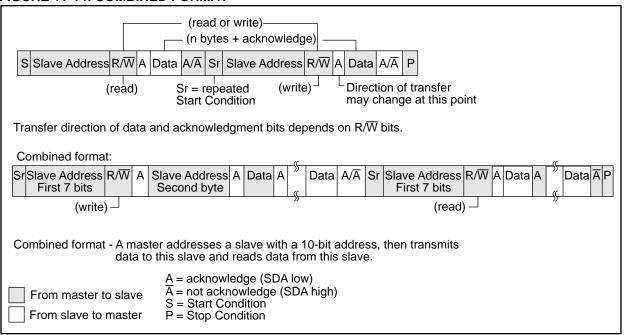
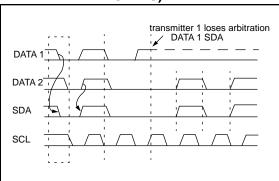

SCL is high), but occurs after a data transfer acknowledge pulse (not the bus-free state). This allows a master to send "commands" to the slave and then receive the requested information or to address a different slave device. This sequence is shown in Figure 11-14.

FIGURE 11-12: MASTER-TRANSMITTER SEQUENCE

FIGURE 11-14: COMBINED FORMAT


11.2.4 MULTI-MASTER

The I²C protocol allows a system to have more than one master. This is called multi-master. When two or more masters try to transfer data at the same time, arbitration and synchronization occur.

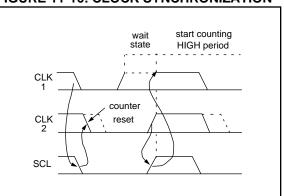
11.2.4.1 ARBITRATION

Arbitration takes place on the SDA line, while the SCL line is high. The master which transmits a high when the other master transmits a low loses arbitration (Figure 11-15), and turns off its data output stage. A master which lost arbitration can generate clock pulses until the end of the data byte where it lost arbitration. When the master devices are addressing the same device, arbitration continues into the data.

FIGURE 11-15: MULTI-MASTER
ARBITRATION (TWO
MASTERS)

Masters that also incorporate the slave function, and have lost arbitration must immediately switch over to slave-receiver mode. This is because the winning master-transmitter may be addressing it.

Arbitration is not allowed between:

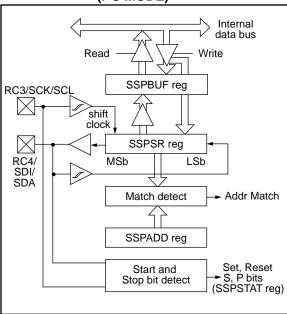

- · A repeated START condition
- · A STOP condition and a data bit
- A repeated START condition and a STOP condition

Care needs to be taken to ensure that these conditions do not occur.

11.2.4.2 CLOCK SYNCHRONIZATION

Clock synchronization occurs after the devices have started arbitration. This is performed using a wired-AND connection to the SCL line. A high to low transition on the SCL line causes the concerned devices to start counting off their low period. Once a device clock has gone low, it will hold the SCL line low until its SCL high state is reached. The low to high transition of this clock may not change the state of the SCL line, if another device clock is still within its low period. The SCL line is held low by the device with the longest low period. Devices with shorter low periods enter a high wait-state, until the SCL line comes high. When the SCL line comes high, all devices start counting off their high periods. The first device to complete its high period will pull the SCL line low. The SCL line high time is determined by the device with the shortest high period, Figure 11-16.

FIGURE 11-16: CLOCK SYNCHRONIZATION



11.3 SSP I²C Operation

Applicable Devices61 62 62A R62 63 64 64A R64 65 65A

The SSP module in I²C mode fully implements all slave functions (except general call support), and provides interrupts on start and stop bits in hardware to facilitate software implementations of the master functions. The SSP module implements the standard and fast mode specifications as well as 7-bit and 10-bit addressing. Two pins are used for data transfer. These are the RC3/SCK/SCL pin, which is the clock (SCL), and the RC4/SDI/SDA pin, which is the data (SDA). The user must configure these pins as inputs or outputs through the TRISC<4:3> bits. The SSP module functions are enabled by setting SSP Enable bit SSPEN (SSP-CON<5>).

FIGURE 11-17: SSP BLOCK DIAGRAM (I²C MODE)

The SSP module has five registers for I²C operation. These are the:

- SSP Control Register (SSPCON)
- SSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not directly accessible
- SSP Address Register (SSPADD)

The SSPCON register allows control of the I²C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I²C modes to be selected:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address), with start and stop bit interrupts enabled
- I²C Slave mode (10-bit address), with start and stop bit interrupts enabled
- I²C start and stop bit interrupts enabled, slave is idle

Selection of any I²C mode, with enable bit SSPEN set, forces the SCL and SDA pins to be open drains, provided these pins are programmed to inputs by setting the appropriate TRISC bits.

The SSPSTAT register gives the status of the data transfer. This information includes detection of a START or STOP bit, specifies if the received byte was data or address, if the next byte is the completion of 10-bit address, and if this will be a read or write data transfer. The SSPSTAT register is read only.

The SSPBUF is the register to which transfer data is written-to or read-from. The SSPSR register shifts the data in or out of the device. In receive operations, the SSPBUF and SSPSR create a doubled buffered receiver. This allows reception of the next byte to begin before reading the last byte of received data. When the complete byte is received, it is transferred to the SSPBUF register and flag bit SSPIF is set. If another complete byte is received before the SSPBUF register is read, a receiver overflow has occurred and overflow detect bit SSPOV (SSPCON<6>) is set, and the byte in the SSPSR is lost.

The SSPADD register holds the slave address. In 10-bit mode, the user needs to write the high byte of the address (1111 0 A9 A8 0). Following the high byte address match, the low byte of the address needs to be loaded (A7:A0).

11.3.1 SLAVE MODE

In slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The SSP module will override the input state with the output data when required (slave-transmitter).

When an address is matched or the data transfer after an address match is received, the hardware automatically will generate the acknowledge (ACK) pulse, and then load the SSPBUF register with the received value in the SSPSR register.

There are certain conditions that will cause the SSP module not to give this \overline{ACK} pulse. These are if either (or both):

- The buffer full bit BF (SSPSTAT<0>) was set before the transfer was received.
- The overflow bit SSPOV (SSPCON<6>) was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF register, but interrupt flag bit SSPIF (PIR1<3>) is set. Table 11-3 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit BF is cleared by reading the SSPBUF register while overflow bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low time for proper operation. The high and low times of the I²C specification as well as the requirement of the SSP module is shown in timing parameter #100 and parameter #101 (see Electrical Specification section).

11.3.1.1 ADDRESSING

Once the SSP module has been enabled, it waits for a START condition to occur. Following the START condition, the 8-bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and bits BF and SSPOV are clear, the following events occur:

- The SSPSR register value is loaded into the SSPBUF register.
- b) The buffer full bit, BF is set.
- c) An ACK pulse is generated.
- d) SSP interrupt flag bit, SSPIF (PIR1<3>) is set (interrupt is generated if enabled) - on falling edge of ninth SCL pulse.

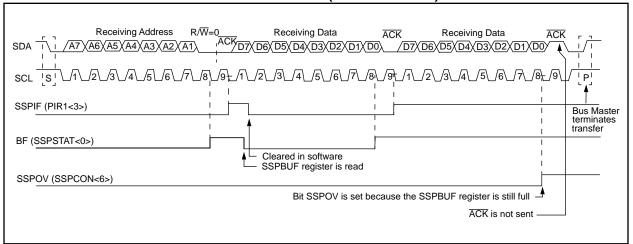
In 10-bit address mode, two address bytes need to be received by the slave (Figure 11-9). The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/\overline{W} (SSPSTAT<2>) must specify a write, so the slave device will receive the second address byte. For a 10-bit address the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address. The sequence of events for a 10-bit address is as follows with steps 7-9 for slave-transmitter:

- 1. Receive first (high) byte of Address (bits SSPIF, BF, and bit UA (SSPSTAT<1>) are set).
- Update the SSPADD register with second (low) byte of Address (clears bit UA and releases the SCL line).
- Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- Receive second (low) byte of Address (bits SSPIF, BF and UA are set).
- Update the SSPADD register with first (high) byte of Address (if match releases SCL line, this will clear bit UA).
- Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive repeated START condition.
- Receive first (high) byte of Address (bits SSPIF and BF are set)
- Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

TABLE 11-3: DATA TRANSFER RECEIVED BYTE ACTIONS

Status Bits as Data Transfer is Received BF SSPOV				Set bit SSPIF
		SSPSR →SSPBUF	Generate ACK Pulse	(SSP Interrupt occurs if Enabled)
0	0	Yes	Yes	Yes
1	0	No	No	Yes
1	1	No	No	Yes
0	1	No	No	Yes

PIC16C6X

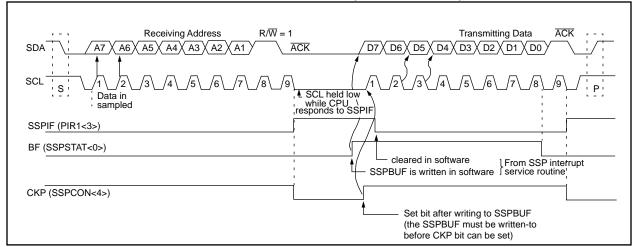

11.3.1.2 RECEPTION

When the R/\overline{W} bit of the address byte is clear and an address match occurs, bit R/\overline{W} (SSPSTAT<2>) is cleared. The received address is loaded into the SSP-BUF register.

When the address byte overflow condition exists then no acknowledge (\overline{ACK}) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set or bit SSPOV (SSPCON<6>) is set.

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software, and the SSPSTAT register is used to determine the status of the byte.

FIGURE 11-18: I²C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)


11.3.1.3 TRANSMISSION

When the R/ \overline{W} bit of the incoming address byte is set and an address match occurs, bit R/ \overline{W} (SSPSTAT<2>) is set. The received address is loaded into the SSPBUF register. The \overline{ACK} pulse will be sent on the ninth bit, and the SCL pin is held low. The transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then the SCL pin should be enabled by setting bit CKP (SSPCON<4>). The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 11-19).

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF must be cleared in software, and the SSPSTAT register is used to determine the status of the byte. Flag bit SSPIF is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the \overline{ACK} pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not \overline{ACK}), then the data transfer is complete. When the \overline{ACK} is latched by the slave, the slave logic is reset and the slave then monitors for another occurrence of the START bit. If the SDA line was low (\overline{ACK}), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then the SCL pin should be enabled by setting bit CKP.

11.3.2 MASTER MODE

Master mode of operation is supported by interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared by a reset or when the SSP module is disabled. Control of the I²C bus may be taken when the P bit is set, or the bus is idle with both the S and P bits clear.

In master mode the SCL and SDA lines are manipulated by clearing the corresponding TRISC<4:3> bit(s). The output level is always low, irrespective of the value(s) in PORTC<4:3>. So when transmitting data, a '1' data bit must have the TRISC<4> bit set (input) and a '0' data bit must have the TRISC<4> bit cleared (output). The same scenario is true for the SCL line with the TRISC<3> bit.

The following events will cause the SSP Interrupt Flag bit SSPIF to be set (SSP Interrupt occurs if enabled):

- · START condition
- · STOP condition
- Data transfer byte transmitted/received

Master mode of operation can be done with either the slave mode idle (SSPM3:SSPM0 = 1011) or with the slave active. When both master and slave modes are enabled, the software needs to differentiate the source(s) of the interrupt.

11.3.3 MULTI-MASTER MODE

In multi-master mode, the interrupt generation on the detection of the START and STOP conditions allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a reset or when the SSP module is disabled. Control of the I^2C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is idle with both bits S and P clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the STOP condition occurs.

In multi-master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRISC<4:3>). There are two stages where this arbitration can be lost, they are:

- · Address Transfer
- Data Transfer

When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage communication to the device may be in progress. If addressed, an \overline{ACK} pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to re-transfer the data at a later time.

TABLE 11-4: REGISTERS ASSOCIATED WITH I²C OPERATION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
13h	SSPBUF	Synchron	ous Serial	Port Rece	eive Buffe	r/Transmit	Register			xxxx xxxx	uuuu uuuu
93h	SSPADD	Synchron	ous Serial	Port (I ² C	mode) Ad	dress Reg	jister			0000 0000	0000 0000
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
87h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
94h	SSPSTAT	_	_	D/Ā	Р	S	R/W	UA	BF	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by the SSP module in I^2C mode.

Note 1: These bits are associated with the USART and are implemented on the PIC16C63/65/65A only.

2: PSPIF and PSPIE are reserved on the PIC16C62/62A/R62/63, always maintain these bits clear.

3: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

FIGURE 11-20: OPERATION OF THE I²C MODULE IN IDLE_MODE, RCV_MODE OR XMIT_MODE

```
IDLE_MODE (7-bit):
if (Addr_match)
                                           Set interrupt;
                                   {
                                           if (R/\overline{W} = 1)
                                                                   Send \overline{ACK} = 0:
                                                                   set XMIT_MODE;
                                           else if (R/\overline{W} = 0) set RCV_MODE;
RCV_MODE:
if ((SSPBUF=Full) OR (SSPOV = 1))
                  Set SSPOV;
                  Do not acknowledge;
else
                   transfer SSPSR → SSPBUF;
                  send \overline{ACK} = 0;
Receive 8-bits in SSPSR;
Set interrupt;
XMIT_MODE:
While ((SSPBUF = Empty) AND (CKP=0)) Hold SCL Low;
Send byte;
Set interrupt;
if (\overline{ACK} Received = 1)
                                  {
                                          End of transmission;
                                          Go back to IDLE_MODE;
else if ( ACK Received = 0) Go back to XMIT_MODE;
IDLE_MODE (10-Bit):
If (High_byte_addr_match AND (R/\overline{W} = 0))
                   PRIOR_ADDR_MATCH = FALSE;
                   Set interrupt;
                  if ((SSPBUF = Full) OR ((SSPOV = 1))
                                   Set SSPOV;
                                   Do not acknowledge;
                  else
                                  Set UA = 1;
                                   Send \overline{ACK} = 0;
                                   While (SSPADD not updated) Hold SCL low;
                                   Clear UA = 0;
                                   Receive Low_addr_byte;
                                   Set interrupt;
                                   Set UA = 1;
                                   If (Low_byte_addr_match)
                                                   PRIOR_ADDR_MATCH = TRUE;
                                                   Send \overline{ACK} = 0;
                                                   while (SSPADD not updated) Hold SCL low;
                                                   Clear UA = 0;
                                                   Set RCV_MODE;
                                          }
                          }
else if (High_byte_addr_match AND (R/\overline{W} = 1)
                  if (PRIOR_ADDR_MATCH)
                                   send \overline{ACK} = 0;
                                   set XMIT_MODE;
          else PRIOR_ADDR_MATCH = FALSE;
          }
```

PIC16C6X

NOTES:

12.0 UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART) MODULE

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two serial I/O modules. (USART is also know as a Serial Communications Interface or SCI) The USART can be configured as a full duplex asynchronous system that can communicate with peripheral devices such as CRT ter-

minals and personal computers, or it can be configured as a half duplex synchronous system that can communicate with peripheral devices such as A/D or D/A integrated circuits, Serial EEPROMs etc.

The USART can be configured in the following modes:

- Asynchronous (full duplex)
- · Synchronous Master (half duplex)
- Synchronous Slave (half duplex)

Bit SPEN (RCSTA<7>) and bits TRISC<7:6> have to be set in order to configure pins RC6/TX/CK and RC7/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter.

FIGURE 12-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0
CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D
bit7							bit0

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

- n =Value at POR reset

bit 7: CSRC: Clock Source Select bit

Asynchronous mode

Don't care

Synchronous mode

- 1 = Master mode (Clock generated internally from BRG)
- 0 = Slave mode (Clock from external source)
- bit 6: TX9: 9-bit Transmit Enable bit
 - 1 = Selects 9-bit transmission
 - 0 = Selects 8-bit transmission
- bit 5: TXEN: Transmit Enable bit
 - 1 = Transmit enabled
 - 0 = Transmit disabled

Note: SREN/CREN overrides TXEN in SYNC mode.

- bit 4: SYNC: USART Mode Select bit
 - 1 = Synchronous mode
 - 0 = Asynchronous mode
- bit 3: Unimplemented: Read as '0'
- bit 2: BRGH: High Baud Rate Select bit

Asynchronous mode

1 = High speed

Note: At the time of this printing, the asynchronous high speed mode (BRGH is set) may experience a high rate of receive errors. It is recommended to have the BRGH bit cleared. If you desire a higher baud rate than BRGH=0 can support, refer to the device errata for additional information.

0 = Low speed

Synchronous mode

Unused in this mode

bit 1: TRMT: Transmit Shift Register Status bit

1 = TSR empty

0 = TSR full

bit 0: **TX9D**: 9th bit of transmit data. Can be parity bit.

FIGURE 12-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R-0	R-x		
SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	R	= Readable bit
bit7							bit0	W	= Writable bit
								U	= Unimplemented
									bit, read as '0'
								- n	= Value at POR reset
								х	= unknown
bit 7:	SPEN: Ser	ial Port En	able bit						

(Configures RC7/RX/DT and RC6/TX/CK pins as serial port pins when bits TRISC<7:6> are set)

1 = Serial port enabled 0 = Serial port disabled

RX9: 9-bit Receive Enable bit bit 6: 1 = Selects 9-bit reception 0 = Selects 8-bit reception

bit 5: SREN: Single Receive Enable bit

Asynchronous mode

Don't care

Synchronous mode - master

1 = Enables single receive

0 = Disables single receive

This bit is cleared after reception is complete.

Synchronous mode - slave

Unused in this mode

CREN: Continuous Receive Enable bit bit 4:

Asynchronous mode

1 = Enables continuous receive

0 = Disables continuous receive

Synchronous mode

1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)

0 = Disables continuous receive

bit 3: Unimplemented: Read as '0'

bit 2: FERR: Framing Error bit

1 = Framing error (Can be updated by reading RCREG register and receive next valid byte)

0 = No framing error

OERR: Overrun Error bit bit 1:

1 = Overrun error (Can be cleared by clearing bit CREN)

0 = No overrun error

bit 0: RX9D: 9th bit of received data (Can be parity bit)

12.1 <u>USART Baud Rate Generator (BRG)</u>

Applicable Devices
61 62 62A R62 63 64 64A R64 65 65A

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. In asynchronous mode bit BRGH (TXSTA<2>) also controls the baud rate. In synchronous mode bit BRGH is ignored. Table 12-1 shows the formula for computation of the baud rate for different USART modes which only apply in master mode (internal clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRG register can be calculated using the formula in Table 12-1. From this, the error in baud rate can be determined.

Example 12-1 shows the calculation of the baud rate error for the following conditions:

Fosc = 16 MHz Desired Baud Rate = 9600 BRGH = 0

SYNC = 0

EXAMPLE 12-1: CALCULATING BAUD RATE ERROR

Desired Baud rate = Fosc / (64 (X + 1))

9600 = 16000000 / (64 (X + 1))

 $X = \lfloor 25.042 \rfloor = 25$

Calculated Baud Rate=16000000 / (64 (25 + 1))

= 9615

Error = (Calculated Baud Rate - Desired Baud Rate)

Desired Baud Rate

= (9615 - 9600) / 9600

= 0.16%

It may be advantageous to use the high baud rate (BRGH = 1) even for slower baud clocks. This is because the Fosc/(16(X + 1)) equation can reduce the baud rate error in some cases.

Note: At the time of this printing, the asynchronous high speed mode (BRGH is set) may experience a high rate of receive errors. It is recommended to have the BRGH bit cleared. If you desire a higher baud rate than BRGH=0 can support, refer to the device errata for additional information.

Writing a new value to the SPBRG register, causes the BRG timer to be reset (or cleared), this ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

TABLE 12-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64(X+1))	Baud Rate = Fosc/(16(X+1))
1	(Synchronous) Baud Rate = Fosc/(4(X+1))	N/A

X = value in SPBRG (0 to 255)

TABLE 12-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
99h	SPBRG	Baud Rat	Baud Rate Generator Register							0000 0000	0000 0000

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used by the BRG.

TABLE 12-3: BAUD RATES FOR SYNCHRONOUS MODE

BAUD	Fosc = 2	20 MHz	SPBRG	16 MHz		SPBRG	10 MHz		SPBRG	7.15909	MHz	SPBRG
RATE (K)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	NA	-	-	NA	-	-	NA	-	-	NA	-	-
2.4	NA	-	-	NA	-	-	NA	-	-	NA	-	-
9.6	NA	-	-	NA	-	-	9.766	+1.73	255	9.622	+0.23	185
19.2	19.53	+1.73	255	19.23	+0.16	207	19.23	+0.16	129	19.24	+0.23	92
76.8	76.92	+0.16	64	76.92	+0.16	51	75.76	-1.36	32	77.82	+1.32	22
96	96.15	+0.16	51	95.24	-0.79	41	96.15	+0.16	25	94.20	-1.88	18
300	294.1	-1.96	16	307.69	+2.56	12	312.5	+4.17	7	298.3	-0.57	5
500	500	0	9	500	0	7	500	0	4	NA	-	-
HIGH	5000	-	0	4000	-	0	2500	-	0	1789.8	-	0
LOW	19.53	-	255	15.625	-	255	9.766	-	255	6.991	-	255

	Fosc =	5.0688 MI	Hz	4 MHz			3.579545	5 MHz		1 MHz			32.768 k	Hz	
BAUD RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-	0.303	+1.14	26
1.2	NA	-	-	NA	-	-	NA	-	-	1.202	+0.16	207	1.170	-2.48	6
2.4	NA	-	-	NA	-	-	NA	-	-	2.404	+0.16	103	NA	-	-
9.6	9.6	0	131	9.615	+0.16	103	9.622	+0.23	92	9.615	+0.16	25	NA	-	-
19.2	19.2	0	65	19.231	+0.16	51	19.04	-0.83	46	19.24	+0.16	12	NA	-	-
76.8	79.2	+3.13	15	76.923	+0.16	12	74.57	-2.90	11	83.34	+8.51	2	NA	-	-
96	97.48	+1.54	12	1000	+4.17	9	99.43	+3.57	8	NA	-	-	NA	-	-
300	316.8	+5.60	3	NA	-	-	298.3	-0.57	2	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	1267	-	0	100	-	0	894.9	-	0	250	-	0	8.192	-	0
LOW	4.950	-	255	3.906	-	255	3.496	-	255	0.9766	-	255	0.032	-	255

TABLE 12-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

BAUD	Fosc = 2		SPBRG	16 MHz		SPBRG	10 MHz		SPBRG	7.15909 l		SPBRG
RATE (K)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)
0.3	NA			NA			NA			NA		
1.2	1.221	+1.73	255	1.202	+0.16	207	1.202	+0.16	129	1.203	+0.23	92
2.4	2.404	+0.16	129	2.404	+0.16	103	2.404	+0.16	64	2.380	-0.83	46
9.6	9.469	-1.36	32	9.615	+0.16	25	9.766	+1.73	15	9.322	-2.90	11
									-			I
19.2	19.53	+1.73	15	19.23	+0.16	12	19.53	+1.73	7	18.64	-2.90	5
76.8	78.13	+1.73	3	83.33	+8.51	2	78.13	+1.73	1	NA	-	-
96	104.2	+8.51	2	NA	-	-	NA	-	-	NA	-	-
300	312.5	+4.17	0	NA	-	-	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	312.5	-	0	250	-	0	156.3	-	0	111.9	-	0
LOW	1.221	-	255	0.977	-	255	0.6104	-	255	0.437	-	255

	Fosc =	5.0688 MI	Hz	4 MHz			3.57954	5 MHz		1 MHz			32.768 k	Hz	
BAUD RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	0.31	+3.13	255	0.3005	-0.17	207	0.301	+0.23	185	0.300	+0.16	51	0.256	-14.67	1
1.2	1.2	0	65	1.202	+1.67	51	1.190	-0.83	46	1.202	+0.16	12	NA	-	-
2.4	2.4	0	32	2.404	+1.67	25	2.432	+1.32	22	2.232	-6.99	6	NA	-	-
9.6	9.9	+3.13	7	NA	-	-	9.322	-2.90	5	NA	-	-	NA	-	-
19.2	19.8	+3.13	3	NA	-	-	18.64	-2.90	2	NA	-	-	NA	-	-
76.8	79.2	+3.13	0	NA	-	-	NA	-	-	NA	-	-	NA	-	-
96	NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-
300	NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	79.2	-	0	62.500	-	0	55.93	-	0	15.63	-	0	0.512	-	0
LOW	0.3094	-	255	3.906	-	255	0.2185	-	255	0.0610	-	255	0.0020	-	255

TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

BAUD RATE (K)	FOSC = 2	20 MHz % ERROR	SPBRG value (decimal)	16 MHz KBAUD	% ERROR	SPBRG value (decimal)	10 MHz KBAUD	% ERROR	SPBRG value (decimal)	7.16 MH	z % ERROR	SPBRG value (decimal)
9.6	9.615	+0.16	129	9.615	+0.16	103	9.615	+0.16	64	9.520	-0.83	46
19.2	19.230	+0.16	64	19.230	+0.16	51	18.939	-1.36	32	19.454	+1.32	22
38.4	37.878	-1.36	32	38.461	+0.16	25	39.062	+1.7	15	37.286	-2.90	11
57.6	56.818	-1.36	21	58.823	+2.12	16	56.818	-1.36	10	55.930	-2.90	7
115.2	113.636	-1.36	10	111.111	-3.55	8	125	+8.51	4	111.860	-2.90	3
250	250	0	4	250	0	3	NA	-	-	NA	-	-
625	625	0	1	NA	-	-	625	0	0	NA	-	-
1250	1250	0	0	NA	-	-	NA	-	-	NA	-	-

BAUD	Fosc = 5	.068 MHz	SPBRG	4 MHz		SPBRG	3.579 MH	Ηz	SPBRG	1 MHz		SPBRG	32.768 k	кНz	SPBRG
RATE (K)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)
9.6	9.6	0	32	NA	-	-	9.727	+1.32	22	8.928	-6.99	6	NA	-	-
19.2	18.645	-2.94	16	1.202	+0.17	207	18.643	-2.90	11	20.833	+8.51	2	NA	-	-
38.4	39.6	+3.12	7	2.403	+0.13	103	37.286	-2.90	5	31.25	-18.61	1	NA	-	-
57.6	52.8	-8.33	5	9.615	+0.16	25	55.930	-2.90	3	62.5	+8.51	0	NA	-	-
115.2	105.6	-8.33	2	19.231	+0.16	12	111.860	-2.90	1	NA	-	-	NA	-	-
250	NA	-	-	NA	-	-	223.721	-10.51	0	NA	-	-	NA	-	-
625	NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1250	NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-

12.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin. If bit BRGH (TXSTA<2>) is clear (i.e., at the low baud rates), the sampling is done on the seventh, eighth and ninth falling edges of a x16 clock (Figure 12-3). If bit BRGH is

set (i.e., at the high baud rates), the sampling is done on the 3 clock edges preceding the second rising edge after the first falling edge of a x4 clock (Figure 12-4 and Figure 12-5).

FIGURE 12-3: RX PIN SAMPLING SCHEME (BRGH = 0)

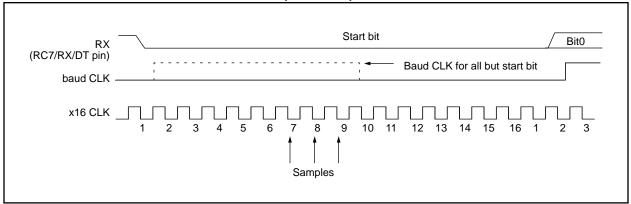


FIGURE 12-4: RX PIN SAMPLING SCHEME (BRGH = 1)

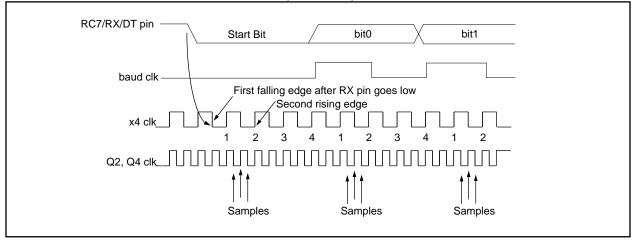
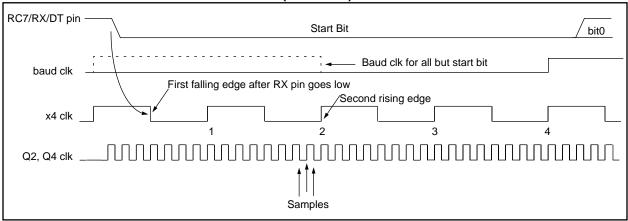



FIGURE 12-5: RX PIN SAMPLING SCHEME (BRGH = 1)

12.2 <u>USART Asynchronous Mode</u>

Applicable Devices
61 62 62A R62 63 64 64A R64 65 65A

In this mode, the USART uses standard nonreturn-to-zero (NRZ) format (one start bit, eight or nine data bits and one stop bit). The most common data format is 8-bits. An on-chip dedicated 8-bit baud rate generator can be used to derive standard baud rate frequencies from the oscillator. The USART transmits and receives the LSb first. The USART's transmitter and receiver are functionally independent but use the same data format and baud rate. The baud rate generator produces a clock either x16 or x64 of the bit shift rate, depending on bit BRGH (TXSTA<2>). Parity is not supported by the hardware, but can be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during SLEEP.

Asynchronous mode is selected by clearing bit SYNC (TXSTA<4>).

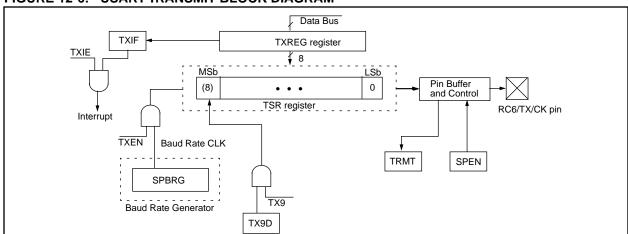
The USART Asynchronous module consists of the following important elements:

- · Baud Rate Generator
- Sampling Circuit
- · Asynchronous Transmitter
- · Asynchronous Receiver

12.2.1 USART ASYNCHRONOUS TRANSMITTER

The USART transmitter block diagram is shown in Figure 12-6. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the STOP bit has been transmitted from the previous load. As soon as the STOP bit is transmitted, the TSR is loaded with new data from the TXREG (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TCY) the TXREG register is empty and flag bit TXIF

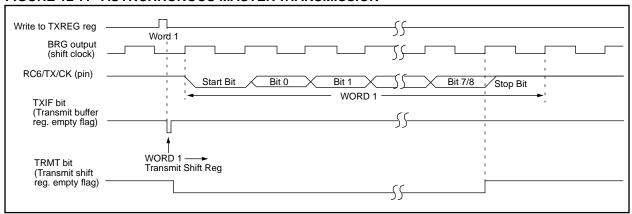
(PIR1<4>) is set. This interrupt is enabled/disabled by setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF will be set regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit, TRMT (TXSTA<1>) shows the status of the TSR register. Status bit TRMT is a read only bit which is set when the TSR register is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty.

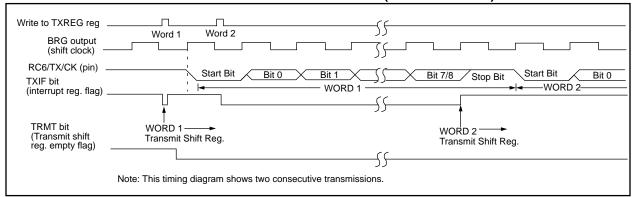

Note 1: The TSR register is not mapped in data memory so it is not available to the user.

Note 2: Flag bit TXIF is set when enable bit TXEN is set.

Transmission is enabled by setting enable bit TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data and the baud rate generator (BRG) has produced a shift clock (Figure 12-6). The transmission can also be started by first loading the TXREG register and then setting enable bit TXEN. Normally when transmission is first started, the TSR register is empty, so a transfer to the TXREG register will result in an immediate transfer to TSR register resulting in an empty TXREG register. A back-to-back transfer is thus possible (Figure 12-8). Clearing enable bit TXEN during a transmission will cause the transmission to be aborted and will reset the transmitter. As a result the RC6/TX/CK pin will revert to hi-impedance.

In order to select 9-bit transmission, transmit bit TX9 (TXSTA<6>) should be set and the ninth bit should be written to bit TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG register can result in an immediate transfer of the data to the TSR register (if the TSR is empty). In such a case, an incorrect ninth data bit maybe loaded in the TSR register


FIGURE 12-6: USART TRANSMIT BLOCK DIAGRAM


Steps to follow when setting up an Asynchronous Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, then set bit BRGH. (Section 12.1).
- Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set transmit bit TX9.
- Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- Load data to the TXREG register (starts transmission).

FIGURE 12-7: ASYNCHRONOUS MASTER TRANSMISSION

FIGURE 12-8: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)

TABLE 12-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

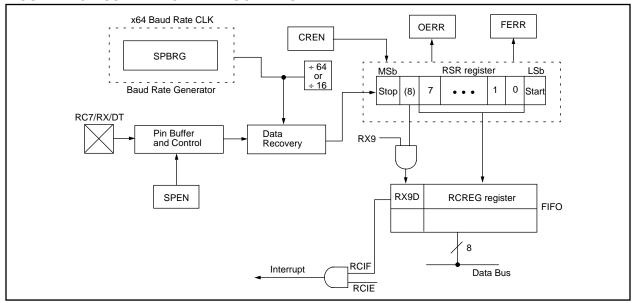
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	x000 0000	0000 -00x
19h	TXREG	TX7	TX6	TX5	TX4	TX3	TX2	TX1	TX0	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register								0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Transmission.

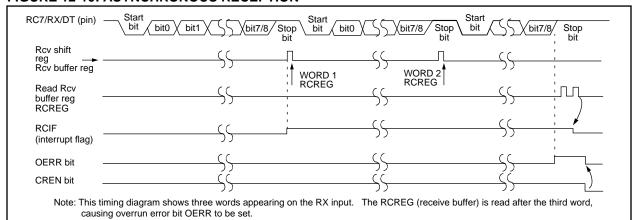
Note 1: PSPIF and PSPIE are reserved on the PIC16C63, always maintain these bits clear.

2: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

12.2.2 USART ASYNCHRONOUS RECEIVER


The receiver block diagram is shown in Figure 12-9. The data comes in the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc.

Once Asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).


The heart of the receiver is the receive (serial) shift register (RSR). After sampling the STOP bit, the received data in the RSR is transferred to the RCREG register (if it is empty). If the transfer is complete, flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit which is cleared by the hardware. It is cleared when the RCREG register has been read and is empty. The RCREG is double buffered register, i.e., it is a two deep FIFO. It is

possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte begin shifting to the RSR register. On the detection of the STOP bit of the third byte, if the RCREG is still full, then the overrun error bit, OERR (RCSTA<1>) will be set. The word in the RSR register will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun bit OERR has to be cleared in software. This is done by resetting the receive logic (CREN is cleared and then set). If bit OERR is set, transfers from the RSR register to the RCREG register are inhibited. so it is essential to clear overrun bit OERR if it is set. Framing error bit FERR (RCSTA<2>) is set if a stop bit is detected as clear. Error bit FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG register will load bits RX9D and FERR with new values. Therefore it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old FERR and RX9D information.

FIGURE 12-9: USART RECEIVE BLOCK DIAGRAM

FIGURE 12-10: ASYNCHRONOUS RECEPTION

PIC16C6X

Steps to follow when setting up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 12.1).
- Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- If interrupts are desired, then set enable bit RCIE.
- 4. If 9-bit reception is desired, then set bit RX9.
- Enable the reception by setting enable bit CREN.

- Flag bit RCIF will be set when reception is complete, and an interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- Read the 8-bit received data by reading the RCREG register.
- If any error occurred, clear the error by clearing enable bit CREN.

TABLE 12-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register								0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.

Note 1: PSPIE and PSPIF are reserved on the PIC16C63, always maintain these bits clear.

2: PIE1<6> and PIR1<6> are reserved, always maintain these bits clear.

12.3 USART Synchronous Master Mode

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

In Synchronous Master mode the data is transmitted in a half-duplex manner i.e., transmission and reception do not occur at the same time. When transmitting data the reception is inhibited and vice versa. Synchronous mode is entered by setting bit SYNC (TXSTA<4>). In addition enable bit SPEN (RCSTA<7>) is set in order to configure the RC6 and RC7 I/O pins to CK (clock) and DT (data) lines respectively. The Master mode indicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting bit CSRC (TXSTA<7>).

12.3.1 USART SYNCHRONOUS MASTER TRANSMISSION

The USART transmitter block diagram is shown in Figure 12-6. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer register, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR register is loaded with new data from the TXREG register (if available). Once the TXREG register transfers the data to the TSR register (occurs in one Tcycle), the TXREG register is empty and interrupt flag bit TXIF (PIR1<4>) is set. This interrupt can be enabled/disabled by setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF will be set regardless of the status of enable bit TXIE and cannot be cleared in software. It will clear only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit, TRMT (TXSTA<1>), shows the status of the TSR register. Status bit TRMT is a read only bit which is set when the TSR register is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty. The TSR register is not mapped in data memory so it is not available to the

Transmission is enabled by setting enable bit TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data. The first data bit will be shifted out on the next available rising edge of the clock on the CK line. Data out is stable around the falling edge of the synchronous clock (Figure 12-11). The transmission can also be started by first loading the TXREG register and then setting enable bit TXEN. This is advantageous when slow baud rates are selected, since the BRG is kept in reset when bits TXEN, CREN, and SREN are clear. Setting enable bit TXEN will start the BRG, creating a shift clock immediately. Normally when transmission is first started, the TSR register is empty, so a transfer to the TXREG register will result in an immediate transfer to TSR resulting in an empty TXREG register. Back-to-back transfers are possible.

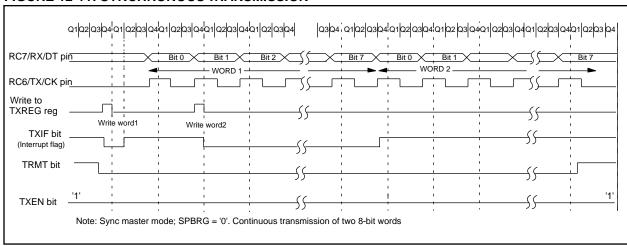
Clearing enable bit TXEN, during a transmission, will cause the transmission to be aborted and will reset the transmitter. The DT and CK pins will revert to hi-impedance. If, during a transmission, either bit CREN or bit SREN is set the transmission is aborted and the DT pin reverts to a hi-impedance state (for a reception). The CK pin will remain an output if bit CSRC is set (internal clock). The transmitter logic however, is not reset although it is disconnected from the pins. In order to reset the transmitter, the user has to clear enable bit TXEN. If enable bit SREN is set (to interrupt an on going transmission and receive a single word), then after the single word is received, enable bit SREN will be cleared, and the serial port will revert back to transmitting since enable bit TXEN is still set. The DT line will immediately switch from hi-impedance receive mode to transmit and start driving. To avoid this, enable bit TXEN should be cleared.

In order to select 9-bit transmission, bit TX9 (TXSTA<6>) should be set and the ninth bit should be written to bit TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG register can result in an immediate transfer of the data to the TSR register (if the TSR is empty). If the TSR register was empty and the TXREG register was written before writing the "new" TX9D, the "present" value of bit TX9D is loaded.

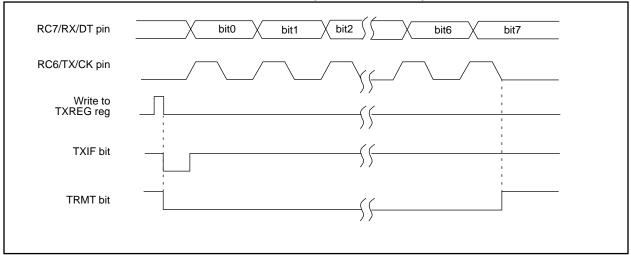
Steps to follow when setting up a Synchronous Master Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 12.1).
- Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- Enable the transmission by setting enable bit TXEN.
- If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

TABLE 12-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION


Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	TX7	TX6	TX5	TX4	TX3	TX2	TX1	TX0	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	-	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register								0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Synchronous Master Transmission.


Note 1: PSPIE and PSPIF are reserved on the PIC16C63, always maintain these bits clear.

2: PIE1<6> and PIR1<6> are reserved, always maintain these bits clear.

FIGURE 12-11: SYNCHRONOUS TRANSMISSION

FIGURE 12-12: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

12.3.2 USART SYNCHRONOUS MASTER RECEPTION

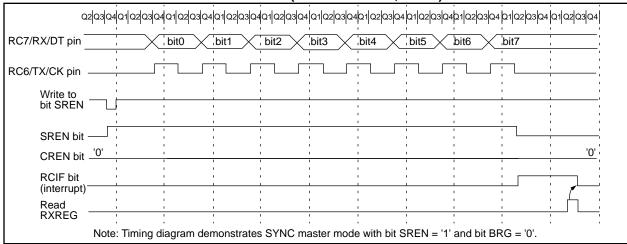
Once Synchronous Mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>) bit or enable bit CREN (RCSTA<4>). Data is sampled on the DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until bit CREN is cleared. If both the bits are set then bit CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to the RCREG register (if it is empty). When the transfer is complete, interrupt bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit which is reset by the hardware. In this case, it is reset when the RCREG register has been read and is empty. The RCREG is a double buffered register, i.e., it is a two deep FIFO. It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR register. On the clocking of the last bit of the third byte, if the RCREG register is still full, then overrun error bit, OERR (RCSTA<1>) is set. The word in the RSR register will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun error bit OERR has to be cleared in software (by clearing bit CREN). If bit OERR is set, transfers from the RSR to the RCREG are inhibited, so it is essential to clear bit OERR if it is set. The 9th receive bit is buffered the same way as the receive data. Reading the RCREG register will load bit RX9D with a new value. Therefore it is essential for the user to read the RCSTA register before reading the RCREG register in order not to lose the old RX9D bit information.

Steps to follow when setting up Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 12.1).
- Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. If 9-bit reception is desired, then set bit RX9.
- If a single reception is required, set enable bit SREN. For continuous reception set enable bit CREN.
- Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- Read the 8-bit received data by reading the RCREG register.
- If any error occurred, clear the error by clearing enable bit CREN.

TABLE 12-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	x000 0000	0000 -00x
1Ah	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register								0000 0000	0000 0000


Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Synchronous Master Reception.

Note 1: PSPIF and PSPIE are reserved on the PIC16C63, always maintain these bits clear.

^{2:} PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

PIC16C6X

FIGURE 12-13: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

12.4 USART Synchronous Slave Mode

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

Synchronous Slave Mode differs from Master Mode in the fact that the shift clock is supplied externally at the CK pin (instead of being supplied internally in master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

12.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the synchronous master and slave modes are identical except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from SLEEP and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up Synchronous Slave Transmission:

- Enable the synchronous slave serial port by setting bits SYNC and SPEN, and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting bit TXEN.
- If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- Start transmission by loading data to the TXREG register.

12.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the synchronous master and slave modes is identical except in the case of the SLEEP mode. Also, enable bit SREN is a don't care in slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Reception:

- Enable the synchronous master serial port by setting bits SYNC and SPEN, and clearing bit CSRC.
- If interrupts are desired, then set enable bit RCIE.
- 3. If 9-bit reception is desired, then set bit RX9.
- To enable reception, set enable bit CREN.
- Flag bit RCIF will be set when reception is complete, and an interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing enable bit CREN.

TABLE 12-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	TX7	TX6	TX5	TX4	TX3	TX2	TX1	TX0	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register						0000 0000	0000 0000		

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Synchronous Slave Transmission.

TABLE 12-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generat	or Regist	ter					0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Synchronous Slave Reception.

Note 1: PSPIF and PSPIE are reserved on the PIC16C63, always maintain these bits clear.

^{2:} PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

Note 1: PSPIF and PSPIE are reserved on the PIC16C63, always maintain these bits clear.

^{2:} PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

13.0 SPECIAL FEATURES OF THE CPU

Applicable Devices
61 62 62 A R62 63 64 64 A R64 65 65 A

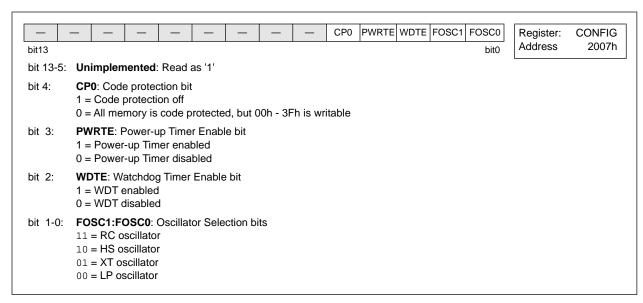
What sets a microcontroller apart from other processors are special circuits to deal with the needs of real-time applications. The PIC16CXX family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- · Oscillator selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP mode
- · Code protection
- · ID locations
- · In-circuit serial programming

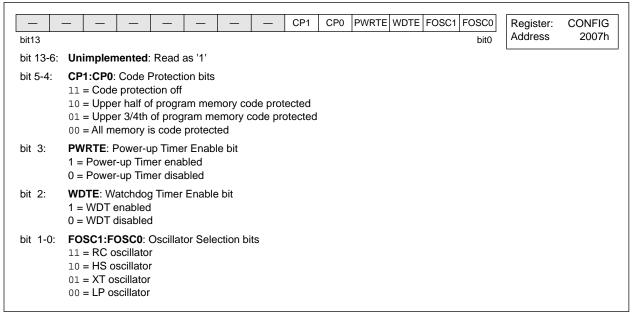
The PIC16CXX has a Watchdog Timer which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two

timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake from SLEEP through external reset, Watchdog Timer Wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.


13.1 Configuration Bits

Applicable Devices 61 62 62 A R62 63 64 64 A R64 65 65 A


The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

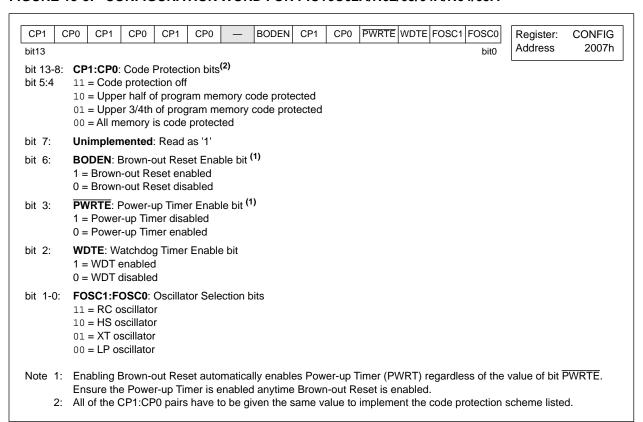

FIGURE 13-1: CONFIGURATION WORD FOR PIC16C61

FIGURE 13-2: CONFIGURATION WORD FOR PIC16C62/64/65

FIGURE 13-3: CONFIGURATION WORD FOR PIC16C62A/R62/63/64A/R64/65A

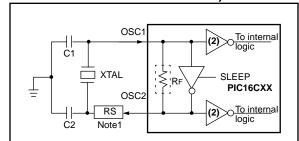
13.2 <u>Oscillator Configurations</u>

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

13.2.1 OSCILLATOR TYPES

The PIC16CXX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

LP Low Power CrystalXT Crystal/Resonator


• HS High Speed Crystal/Resonator

RC Resistor/Capacitor

13.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In LP, XT, or HS modes a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 13-4). The PIC16CXX oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in LP, XT, or HS modes, the device can have an external clock source to drive the OSC1/CLKIN pin (Figure 13-5).

FIGURE 13-4: CRYSTAL/CERAMIC
RESONATOR OPERATION
(HS, XT OR LP OSC
CONFIGURATION)

See Table 13-1, Table 13-2, Table 13-3 and Table 13-4 for recommended values of C1 and C2.

Note 1: A series resistor may be required for AT strip cut crystals.

 For the PIC16C61 the buffer is on the OSC2 pin, all other devices have the buffer on the OSC1 pin.

FIGURE 13-5: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

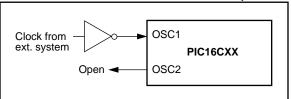


TABLE 13-1: CERAMIC RESONATORS PIC16C61

Ranges Tested:						
Mode	Freq	OSC1	OSC2			
XT	455 kHz	47 - 100 pF	47 - 100 pF			
	2.0 MHz	15 - 68 pF	15 - 68 pF			
	4.0 MHz	15 - 68 pF	15 - 68 pF			
HS	8.0 MHz	15 - 68 pF	15 - 68 pF			
	16.0 MHz	10 - 47 pF	10 - 47 pF			

Note: Recommended values of C1 and C2 are identical to the ranges tested table.

Higher capacitance increases the stability of oscillator but also increases the start-up time. These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.

Resonators Used:

455 kHz	Panasonic EFO-A455K04B	± 0.3%
2.0 MHz	Murata Erie CSA2.00MG	± 0.5%
4.0 MHz	Murata Erie CSA4.00MG	± 0.5%
8.0 MHz	Murata Erie CSA8.00MT	± 0.5%
16.0 MHz	Murata Erie CSA16.00MX	± 0.5%

All resonators used did not have built-in capacitors.

TABLE 13-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR FOR PIC16C61

Mode	Freq	OSC1	OSC2
LP	32 kHz	33 - 68 pF	33 - 68 pF
	200 kHz	15 - 47 pF	15 - 47 pF
XT	100 kHz	47 - 100 pF	47 - 100 pF
	500 kHz	20 - 68 pF	20 - 68 pF
	1 MHz	15 - 68 pF	15 - 68 pF
	2 MHz	15 - 47 pF	15 - 47 pF
	4 MHz	15 - 33 pF	15 - 33 pF
HS	8 MHz	15 - 47 pF	15 - 47 pF
	20 MHz	15 - 47 pF	15 - 47 pF

Note: Higher capacitance increases the stability of oscillator but also increases the start-up time. These values are for design guidance only. Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

TABLE 13-3: CERAMIC RESONATORS PIC16C62/62A/R62/63/64/64A/ R64/65/65A

Ranges Te	Ranges Tested:						
Mode	Freq	OSC1	OSC2				
XT	455 kHz	68 - 100 pF	68 - 100 pF				
	2.0 MHz	15 - 68 pF	15 - 68 pF				
	4.0 MHz	15 - 68 pF	15 - 68 pF				
HS	8.0 MHz	10 - 68 pF	10 - 68 pF				
	16.0 MHz	10 - 22 pF	10 - 22 pF				

Note: Recommended values of C1 and C2 are identical to the ranges tested table.

Higher capacitance increases the stability of oscillator but also increases the start-up time. These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.

Resonato	Resonators Used:					
455 kHz	Panasonic EFO-A455K04B	± 0.3%				
2.0 MHz Murata Erie CSA2.00MG ± 0.5%						
4.0 MHz	Murata Erie CSA4.00MG	± 0.5%				
8.0 MHz Murata Erie CSA8.00MT ± 0.5%						
16.0 MHz Murata Erie CSA16.00MX ± 0.5%						
All resonators used did not have built-in capacitors.						

TABLE 13-4: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR FOR PIC16C62/62A/R62/63/64/ 64A/R64/65/65A

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15 pF
XT	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15-33 pF	15-33 pF
	20 MHz	15-33 pF	15-33 pF
Crystals Used			
32 kHz	Epson C-00	01R32.768K-A	± 20 PPM
200 kHz	STD XTL 2	± 20 PPM	
1 MHz	ECS ECS-	± 50 PPM	
4 MHz	ECS ECS-4	± 50 PPM	
8 MHz	EPSON CA-301 8.000M-C ± 30 PPM		
20 MHz	EPSON CA	A-301 20.000M-C	± 30 PPM

13.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used; one with series resonance, or one with parallel resonance.

Figure 13-6 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometer biases the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 13-6: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

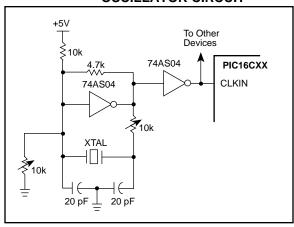
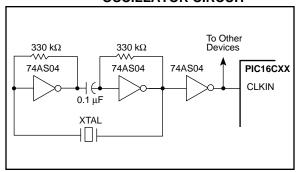
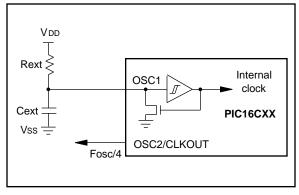



Figure 13-7 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 13-7: EXTERNAL SERIES
RESONANT CRYSTAL
OSCILLATOR CIRCUIT

13.2.4 RC OSCILLATOR

For timing insensitive applications the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 13-8 shows how the RC combination is connected to the PIC16CXX. For Rext values below 2.2 k Ω , the oscillator operation may become unstable or stop completely. For very high Rext values (e.g. 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend keeping Rext between 3 k Ω and 100 k Ω .


Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See characterization data for desired device for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See characterization data for desired device for variation of oscillator frequency due to VDD for given Rext/ Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (see Figure 3-4 for waveform).

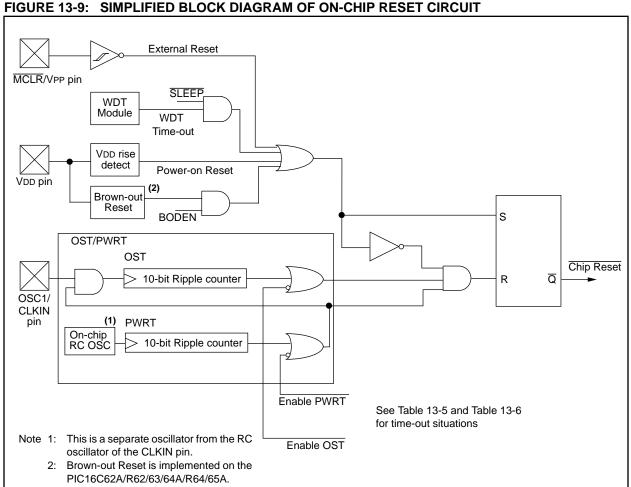
FIGURE 13-8: RC OSCILLATOR MODE

13.3 Reset

Applicable Devices 61|62|62A|R62|63|64|64A|R64|65|65A

The PIC16CXX differentiates between various kinds of reset:

- Power-on Reset (POR)
- MCLR reset during normal operation
- MCLR reset during SLEEP
- · WDT Reset (normal operation)
- Brown-out Reset (BOR) PIC16C62A/R62/63/ 64A/R64/65A


Some registers are not affected in any reset condition, their status is unknown on POR and unchanged in any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), on MCLR or WDT Reset, on MCLR reset during SLEEP, and on Brownout Reset (BOR). They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation.

The TO and PD bits are set or cleared differently in different reset situations as indicated in Table 13-7, Table 13-8, and Table 13-9. These bits are used in software to determine the nature of the reset. See Table 13-12 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 13-9.

On the PIC16C62A/R62/63/64A/R64/65A, the $\overline{\text{MCLR}}$ reset path has a noise filter to detect and ignore small pulses. See parameter #34 for pulse width specifica-

It should be noted that a WDT Reset does not drive the MCLR pin low.

13.4 Power-on Reset (POR), Power-up Timer (PWRT), Oscillator Start-up Timer (OST) and Brown-out Reset (BOR)

Applicable Devices 61 62 62 A R62 63 64 64 A R64 65 65 A

13.4.1 POWER-ON RESET (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.5V - 2.1V). To take advantage of the POR, just tie the MCLR/VPP pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is required. See Electrical Specifications for details.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature, ...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met.

For additional information, refer to Application Note AN607, "Power-up Trouble Shooting."

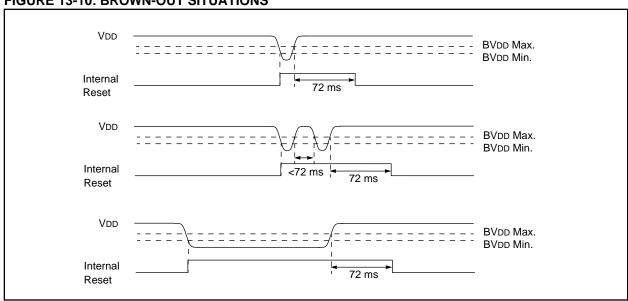
13.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only, from POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature, and process variation. See DC parameters for details.

13.4.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures the crystal oscillator or resonator has started and stabilized.


The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

13.4.4 BROWN-OUT RESET (BOR)

Applicable Devices
61 62 62A R62 63 64 64A R64 65 65A

A configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V (parameter D005 in Electrical Specification section) for greater than parameter #34 (see Electrical Specification section), the brown-out situation will reset the chip. A reset may not occur if VDD falls below 4.0V for less than parameter #34. The chip will remain in Brown-out Reset until VDD rises above BVDD. The Power-up Timer will now be invoked and will keep the chip in RESET an additional 72 ms. If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute a 72 ms time delay. The Power-up Timer should always be enabled when Brown-out Reset is enabled. Figure 13-10 shows typical brown-out situations.

FIGURE 13-10: BROWN-OUT SITUATIONS

13.4.5 TIME-OUT SEQUENCE

On power-up the time-out sequence is as follows: First a PWRT time-out is invoked after the POR time delay has expired. Then OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode, with the PWRT disabled, there will be no time-out at all. Figure 13-11, Figure 13-12, and Figure 13-13 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if the \overline{MCLR}/VPP pin is kept low long enough, the time-outs will expire. Then bringing the \overline{MCLR}/VPP pin high will begin execution immediately (Figure 13-14). This is useful for testing purposes or to synchronize more than one PIC16CXX device operating in parallel.

Table 13-10 and Table 13-11 show the reset conditions for some special function registers, while Table 13-12 shows the reset conditions for all the registers.

13.4.6 POWER CONTROL/STATUS REGISTER (PCON)

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A									
61	62	62A	R62	63	64	64A	R64	65	65A

The Power Control/Status Register, PCON has up to 2 bits, depending upon the device. Bit0 is not implemented on the PIC16C62/64/65.

Bit0 is BOR (Brown-out Reset Status bit). BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent resets to see if BOR cleared, indicating that a brown-out has occurred. The BOR status bit is a "Don't Care" and is not necessarily predictable if the Brown-out Reset circuitry is disabled (by clearing bit BODEN in the Configuration Word).

Bit1 is POR (Power-on Reset Status bit). It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

TABLE 13-5: TIME-OUT IN VARIOUS SITUATIONS, PIC16C61/62/64/65

Oscillator Configuration	Powe	Wake-up from SLEEP	
	PWRTE = 1	PWRTE = 0	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	1024 Tosc
RC	72 ms	_	_

TABLE 13-6: TIME-OUT IN VARIOUS SITUATIONS, PIC16C62A/R62/63/64A/R64/65A

Oscillator Configuration	Power-	-up	Drawn out	Wake up from	
Oscillator Configuration	$\overline{\text{PWRTE}} = 0$ $\overline{\text{PWRTE}} = 1$		Brown-out	SLEEP	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024 Tosc	
RC	72 ms	_	72 ms	_	

TABLE 13-7: STATUS BITS AND THEIR SIGNIFICANCE, PIC16C61

TO	PD	
1	1	Power-on Reset or MCLR reset during normal operation
0	1	WDT Reset
0	0	WDT Wake-up
1	0	MCLR reset during SLEEP or interrupt wake-up from SLEEP

TABLE 13-8: STATUS BITS AND THEIR SIGNIFICANCE, PIC16C62/64/65

POR	TO	PD			
0	1	1	Power-on Reset		
0	0	x	Illegal, TO is set on a Power-on Reset		
0	х	0	Illegal, PD is set on a Power-on Reset		
1	0	1	WDT Reset		
1	0	0	WDT Wake-up		
1	u	u	MCLR reset during normal operation		
1	1	0	MCLR reset during SLEEP or interrupt wake-up from SLEEP		

Legend: x = unknown, u = unchanged

TABLE 13-9: STATUS BITS AND THEIR SIGNIFICANCE FOR PIC16C62A/R62/63/64A/R64/65A

POR	BOR	TO	PD	
0	х	1	1	Power-on Reset
0	x	0	x	Illegal, TO is set on a Power-on Reset
0	x	x	0	Illegal, PD is set on a Power-on Reset
1	0	x	x	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR reset during normal operation
1	1	1	0	MCLR reset during SLEEP or interrupt wake-up from SLEEP

Legend: x = unknown, u = unchanged

TABLE 13-10: RESET CONDITION FOR SPECIAL REGISTERS ON PIC16C61/62/64/65

	Program Counter	STATUS	PCON ⁽²⁾
Power-on Reset	000h	0001 1xxx	0-
MCLR reset during normal operation	000h	000u uuuu	u-
MCLR reset during SLEEP	000h	0001 0uuu	u-
WDT Reset	000h	0000 1uuu	u-
WDT Wake-up	PC + 1	uuu0 0uuu	u-
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuu1 0uuu	u-

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and the global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC+1.

2: The PCON register is not implemented on the PIC16C61.

TABLE 13-11: RESET CONDITION FOR SPECIAL REGISTERS ON PIC16C62A/R62/63/64A/R64/65A

	Program Counter	STATUS	PCON
Power-on Reset	000h	0001 1xxx	0x
MCLR reset during normal operation	000h	000u uuuu	uu
MCLR reset during SLEEP	000h	0001 0uuu	uu
WDT Reset	000h	0000 1uuu	uu
Brown-out Reset	000h	0001 1uuu	u0
WDT Wake-up	PC + 1	uuu0 0uuu	uu
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuu1 0uuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC+1.

TABLE 13-12: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Register	Applicable Devices					Power-on Reset Brown-out Reset	MCLR Reset during: - normal operation - SLEEP WDT Reset	Wake-up via interrupt or WDT Wake-up					
W	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu
INDF	61	62	62A	R62	63	64	64A	R64	65	65A	N/A	N/A	N/A
TMR0	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	61	62	62A	R62	63	64	64A	R64	65	65A	0000h	0000h	PC + 1(2)
STATUS	61	62	62A	R62	63	64	64A	R64	65	65A	0001 1xxx	000q quuu (3)	uuuq quuu(3)
FSR	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA	61	62	62A	R62	63	64	64A	R64	65	65A	x xxxx	u uuuu	u uuuu
PORTA	61	62	62A	R62	63	64	64A	R64	65	65A	xx xxxx	uu uuuu	uu uuuu
PORTB	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTC	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTD	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTE	61	62	62A	R62	63	64	64A	R64	65	65A	xxx	uuu	uuu
PCLATH	61	62	62A	R62	63	64	64A	R64	65	65A	0 0000	0 0000	u uuuu
INTCON	61	62	62A	R62	63	64	64A	R64	65	65A	0000 000x	0000 000u	uuuu uuuu(1)
PIR1	61	62	62A	R62	63	64	64A	R64	65	65A	00 0000	00 0000	uu uuuu(1)
	61	62	62A	R62	63	64	64A	R64	65	65A	0000 0000	0000 0000	uuuu uuuu(1)
PIR2	61	62	62A	R62	63	64	64A	R64	65	65A	0	0	(2)
TMR1L	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR1H	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu
T1CON	61	62	62A	R62	63	64	64A	R64	65	65A	00 0000	uu uuuu	uu uuuu
TMR2	61	62	62A	R62	63	64	64A	R64	65	65A	0000 0000	0000 0000	uuuu uuuu
T2CON	61	62	62A	R62	63	64	64A	R64	65	65A	-000 0000	-000 0000	-uuu uuuu
SSPBUF	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu
SSPCON	61	62	62A	R62	63	64	64A	R64	65	65A	0000 0000	0000 0000	uuuu uuuu
CCPR1L	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR1H	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP1CON	61	62	62A	R62	63	64	64A	R64	65	65A	00 0000	00 0000	uu uuuu
RCSTA	61	62	62A	R62	63	64	64A	R64	65	65A	0000 -00x	0000 -00x	uuuu -uuu
TXREG	61	62	62A	R62	63	64	64A	R64	65	65A	0000 0000	0000 0000	uuuu uuuu
RCREG	61	62	62A	R62	63	64	64A	R64	65	65A	0000 0000	0000 0000	uuuu uuuu
CCPR2L	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR2H	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP2CON	61	62	62A	R62	63	64	64A	R64	65	65A	0000 0000	0000 0000	uuuu uuuu
OPTION	61	62	62A	R62	63	64	64A	R64	65	65A	1111 1111	1111 1111	uuuu uuuu
TRISA	61	62	62A	R62	63	64	64A	R64	65	65A	1 1111	1 1111	u uuuu
	61	62	62A	R62	63	64	64A	R64	65	65A	11 1111	11 1111	uu uuuu
TRISB	61	62	62A	R62	63	64	64A	R64	65	65A	1111 1111	1111 1111	uuuu uuuu

Legend: u = unchanged, x = unknown, -= unimplemented bit read as '0', q = value depends on condition.

Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

^{2:} When the wake-up is due to an interrupt and the global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

^{3:} See Table 13-10 and Table 13-11 for reset value for specific conditions.

TABLE 13-12: INITIALIZATION CONDITIONS FOR ALL REGISTERS (Cont.'d)

Register	Applicable Devices						evice	S			Power-on Reset Brown-out Reset	MCLR Reset during: - normal operation - SLEEP WDT Reset	Wake-up via interrupt or WDT Wake-up
TRISC	61	62	62A	R62	63	64	64A	R64	65	65A	1111 1111	1111 1111	uuuu uuuu
TRISD	61	62	62A	R62	63	64	64A	R64	65	65A	1111 1111	1111 1111	uuuu uuuu
TRISE	61	62	62A	R62	63	64	64A	R64	65	65A	0000 -111	0000 -111	uuuu -uuu
PIE1	61	62	62A	R62	63	64	64A	R64	65	65A	00 0000	00 0000	uu uuuu
	61	62	62A	R62	63	64	64A	R64	65	65A	0000 0000	0000 0000	uuuu uuuu
PIE2	61	62	62A	R62	63	64	64A	R64	65	65A	0	0	u
PCON	61	62	62A	R62	63	64	64A	R64	65	65A	0u	uu	uu
FCON	61	62	62A	R62	63	64	64A	R64	65	65A	0-	u-	u-
PR2	61	62	62A	R62	63	64	64A	R64	65	65A	1111 1111	1111 1111	1111 1111
SSPADD	61	62	62A	R62	63	64	64A	R64	65	65A	0000 0000	0000 0000	uuuu uuuu
SSPSTAT	61	62	62A	R62	63	64	64A	R64	65	65A	00 0000	00 0000	uu uuuu
TXSTA	61	62	62A	R62	63	64	64A	R64	65	65A	0000 -010	0000 -010	uuuu -uuu
SPBRG	61	62	62A	R62	63	64	64A	R64	65	65A	0000 0000	0000 0000	uuuu uuuu

 $\label{eq:local_$

Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

^{2:} When the wake-up is due to an interrupt and the global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

^{3:} See Table 13-10 and Table 13-11 for reset value for specific conditions.

FIGURE 13-11: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

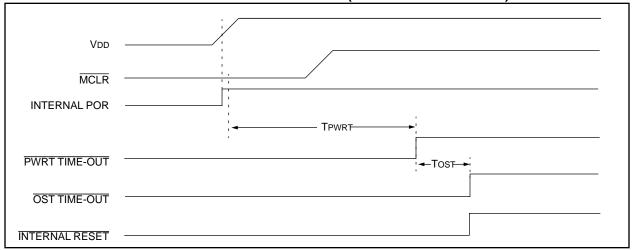


FIGURE 13-12: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

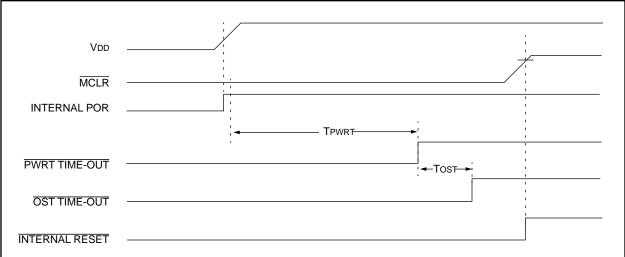


FIGURE 13-13: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

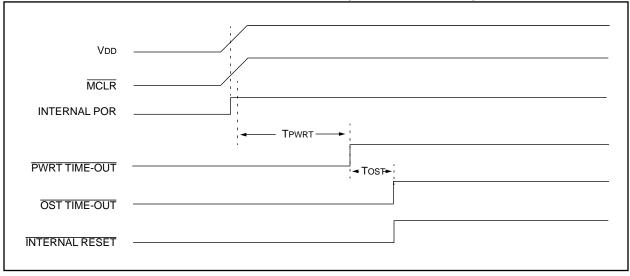
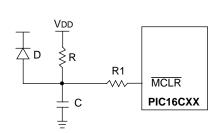
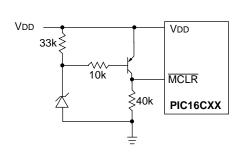




FIGURE 13-14: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

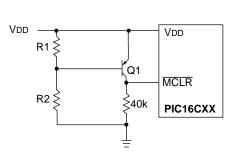

- Note 1: External Power-on Reset circuit is required only if VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - 2: $R < 40 \text{ k}\Omega$ is recommended to make sure that voltage drop across R does not violate the devices electrical specifications.
 - 3: $R1 = 100\Omega$ to 1 $k\Omega$ will limit any current flowing into \overline{MCLR} from external capacitor C in the event of \overline{MCLR}/VPP pin breakdown due to Electrostatic Discharge (ESD) or Electrostatic Overstress (EOS).

FIGURE 13-15: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 1

- Note 1: This circuit will activate reset when VDD goes below (Vz + 0.7V) where Vz = Zener voltage.
 - 2: Internal brown-out detection on the PIC16C62A/R62/63/64A/R64/65A should be disabled when using this circuit.
 - 3: Resistors should be adjusted for the characteristics of the transistors.

FIGURE 13-16: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2

Note 1: This brown-out circuit is less expensive, albeit less accurate. Transistor Q1 turns off when VDD is below a certain level such that:

$$V_{DD} \bullet \frac{R1}{R1 + R2} = 0.7V$$

- 2: Internal brown-out detection on the PIC16C62A/R62/63/64A/R64/65A should be disabled when using this circuit.
- 3: Resistors should be adjusted for the characteristics of the transistors.

13.5 Interrupts

Applicable Devices

61|62|62A|R62|63|64|64A|R64|65|65A

The PIC16C6X family has up to 11 sources of interrupt:

Interrupt Sources		Applicable Devices								
External interrupt RB0/INT	61	62	62A	R62	63	64	64A	R64	65	65A
TMR0 overflow interrupt	61	62	62A	R62	63	64	64A	R64	65	65A
PORTB change interrupt (pins RB7:RB4)	61	62	62A	R62	63	64	64A	R64	65	65A
TMR1 overflow interrupt	61	62	62A	R62	63	64	64A	R64	65	65A
TMR2 matches period interrupt	61	62	62A	R62	63	64	64A	R64	65	65A
CCP1 interrupt	61	62	62A	R62	63	64	64A	R64	65	65A
CCP2 interrupt	61	62	62A	R62	63	64	64A	R64	65	65A
USART Receive	61	62	62A	R62	63	64	64A	R64	65	65A
USART Transmit	61	62	62A	R62	63	64	64A	R64	65	65A
Synchronous serial port interrupt	61	62	62A	R62	63	64	64A	R64	65	65A
Parallel slave port read/write interrupt	61	62	62A	R62	63	64	64A	R64	65	65A

The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:

Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or global enable bit, GIE.

Global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in the INTCON register. GIE is cleared on reset.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which re-enable interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flag bits are contained in the INTCON register.

The peripheral interrupt flag bits are contained in special function registers PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers PIE1 and PIE2 and the peripheral interrupt enable bit is contained in special function register INTCON.

When an interrupt is responded to, bit GIE is cleared to disable any further interrupts, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the RB0/INT pin or RB port change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs

(Figure 13-20). The latency is the same for one or two cycle instructions. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid infinite interrupt requests. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.

Note:

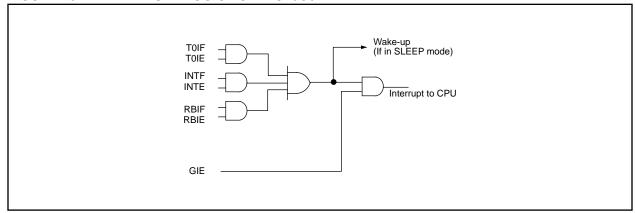
For the PIC16C61/62/64/65

If an interrupt occurs while the Global Interrupt Enable bit, GIE is being cleared, bit GIE may unintentionally be re-enabled by the user's Interrupt Service Routine (the RETFIE instruction). The events that would cause this to occur are:

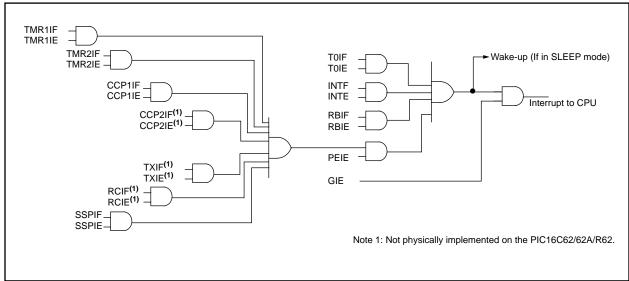
- An instruction clears the GIE bit while an interrupt is acknowledged
- The program branches to the Interrupt vector and executes the Interrupt Service Routine.
- 3. The Interrupt Service Routine completes with the execution of the RET-FIE instruction. This causes the GIE bit to be set (enables interrupts), and the program returns to the instruction after the one which was meant to disable interrupts.
- Perform the following to ensure that interrupts are globally disabled.

LOOP BCF INTCON, GIE

;Disable Global ;Interrupt bit


BTFSC INTCON, GIE ; Global Interrupt

;Disabled?


GOTO LOOP

;NO, try again ;Yes, continue ; with program flow

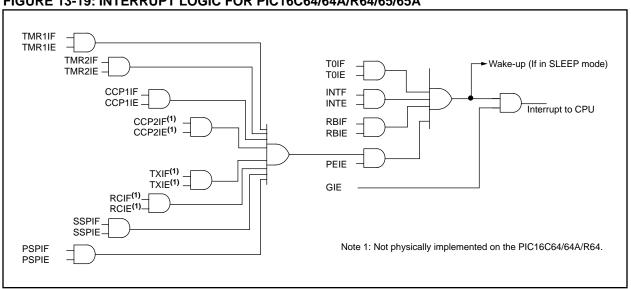
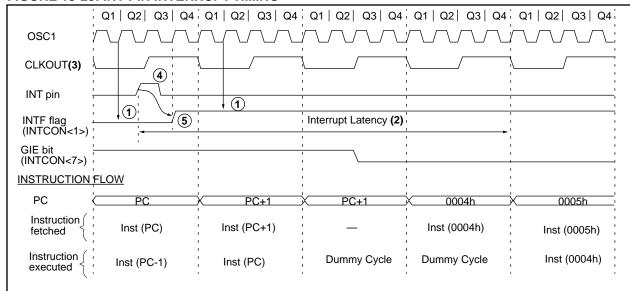

FIGURE 13-17: INTERRUPT LOGIC FOR PIC16C61

FIGURE 13-18: INTERRUPT LOGIC FOR PIC16C62/62A/R62/63

FIGURE 13-19: INTERRUPT LOGIC FOR PIC16C64/64A/R64/65/65A


13.5.1 INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered: either rising if edge select bit INTEDG (OPTION<6>) is set, or falling, if bit INTEDG is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). The INTF bit must be cleared in software in the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake the processor from SLEEP, if enable bit INTE was set prior to going into SLEEP. The status of global enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See Section 13.8 for details on SLEEP mode.

13.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>) (Section 7.0).

FIGURE 13-20: INT PIN INTERRUPT TIMING

Note 1: INTF flag is sampled here (every Q1).

- 2: Interrupt latency = 3-4Tcy where Tcy = instruction cycle time.

 Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.
- 3: CLKOUT is available only in RC oscillator mode.
- 4: For minimum width spec of INT pulse, refer to AC specs.
- 5: INTF can to be set anytime during the Q4-Q1 cycles.

13.5.3 PORTB INTERRUPT ON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>) (Section 5.2).

Note: For the PIC16C61/62/64/65

if a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then flag bit RBIF may not get set.

13.6 <u>Context Saving During Interrupts</u>

Applicable Devices

61|62|62A|R62|63|64|64A|R64|65|65A

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt i.e., W register and STATUS register. This will have to be implemented in software.

Example 13-1 and Example 13-2 store and restore the STATUS and W registers. For all PIC16C6X devices with greater than 1K of program memory (all devices except PIC16C61), the register, W_TEMP, must be defined in both banks and must be defined at the same offset from the bank base address (i.e., if W_TEMP is defined at 0x20 in bank 0, it must also be defined at 0xA0 in bank 1).

The examples:

- a) Stores the W register.
- b) Stores the STATUS register in bank 0.
- c) Executes ISR code.
- d) Restores STATUS register (and bank select bit).
- e) Restores W register.

EXAMPLE 13-1: SAVING STATUS AND W REGISTERS IN RAM (PIC16C61)

```
MOVWF
         W_TEMP
                           ;Copy W to TEMP register, could be bank one or zero
SWAPF
         STATUS, W
                           ;Swap status to be saved into W
MOVWF
         STATUS TEMP
                           ; Save status to bank zero STATUS_TEMP register
:(ISR)
SWAPF
         STATUS_TEMP, W
                           ;Swap STATUS_TEMP register into W
                           ; (sets bank to original state)
MOVWF
         STATUS
                           ; Move W into STATUS register
         W_TEMP,F
                           ;Swap W_TEMP
SWAPF
         W_TEMP,W
                           ;Swap W_TEMP into W
SWAPF
```

EXAMPLE 13-2: SAVING STATUS AND W REGISTERS IN RAM (PIC16C62/62A/R62/63/64/64A/R64/65/65A)

```
MOVWF
         W_TEMP
                           ;Copy W to TEMP register, could be bank one or zero
SWAPF
         STATUS, W
                           ;Swap status to be saved into W
BCF
         STATUS, RPO
                           ; Change to bank zero, regardless of current bank
MOVWF
         STATUS TEMP
                           ; Save status to bank zero STATUS_TEMP register
:
:(ISR)
SWAPF
         STATUS_TEMP, W
                           ;Swap STATUS_TEMP register into W
                           ; (sets bank to original state)
MOVWF
         STATUS
                           ; Move W into STATUS register
SWAPF
         W_TEMP,F
                           ;Swap W_TEMP
SWAPF
         W_TEMP,W
                           ;Swap W_TEMP into W
```

13.7 Watchdog Timer (WDT)

Applicable Devices 61 62 62 A R62 63 64 64 A R64 65 65 A

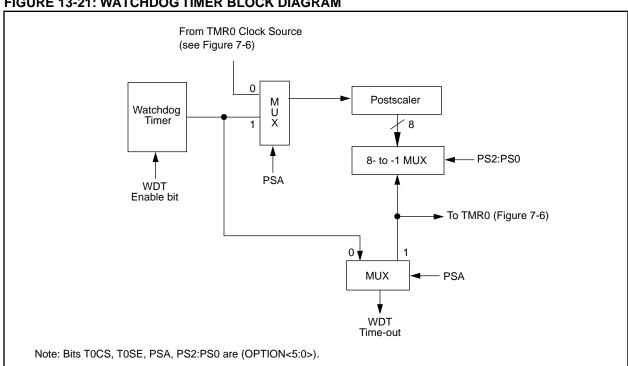
The Watchdog Timer is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT time-out generates a device reset. If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (WDT Wake-up). The WDT can be permanently disabled by clearing configuration bit WDTE (Section 13.1).

13.7.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be

assigned to the WDT under software control by writing to the OPTION register. Thus, time-out periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition


The TO bit in the STATUS register will be cleared upon a WDT time-out.

13.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken in account that under worst case conditions (VDD = Min., Temperature = Max., max. WDT prescaler) it may take several seconds before a WDT time-out occurs.

Note: When the prescaler is assigned to the WDT, always execute a CLRWDT instruction before changing the prescale value, otherwise a WDT reset may occur.

FIGURE 13-21: WATCHDOG TIMER BLOCK DIAGRAM

FIGURE 13-22: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits	(1)	BODEN ⁽¹⁾	CP1	CP0	PWRTE ⁽¹⁾	WDTE	FOSC1	FOSC0
81h	OPTION	RBPU	INTEDG	T0CS	TOSE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Figure 13-1, Figure 13-2, and Figure 13-3 for details of these bits for the specific device.

13.8 Power-down Mode (SLEEP)

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

Power-down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, status bit \overline{PD} (STATUS<3>) is cleared, status bit \overline{TO} (STATUS<4>) is set, and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD, or Vss, ensure no external circuitry is drawing current from the I/O pin, and disable external clocks. Pull all I/O pins, that are hi-impedance inputs, high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or Vss for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The $\overline{\text{MCLR}}/\text{VPP}$ pin must be at a logic high level (VIHMC).

13.8.1 WAKE-UP FROM SLEEP

The device can wake from SLEEP through one of the following events:

- 1. External reset input on MCLR/VPP pin.
- Watchdog Timer Wake-up (if WDT was enabled).
- Interrupt from RB0/INT pin, RB port change, or some peripheral interrupts.

External $\overline{\text{MCLR}}$ Reset will cause a device reset. All other events are considered a continuation of program execution and cause a "wake-up". The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the STATUS register can be used to determine the cause of device reset. The $\overline{\text{PD}}$ bit, which is set on power-up is cleared when SLEEP is invoked. The $\overline{\text{TO}}$ bit is cleared if WDT time-out occurred (and caused wake-up).

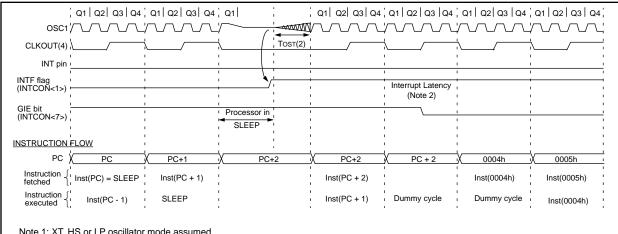
The following peripheral interrupts can wake the device from SLEEP:

- TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- SSP (Start/Stop) bit detect interrupt.
- SSP transmit or receive in slave mode (SPI/I²C).
- 4. CCP capture mode interrupt.
- 5. Parallel Slave Port read or write.
- 6. USART TX or RX (synchronous slave mode).

Other peripherals can not generate interrupts since during SLEEP, no on-chip Q clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

13.8.2 WAKE-UP USING INTERRUPTS


When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs before the the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

FIGURE 13-23: WAKE-UP FROM SLEEP THROUGH INTERRUPT

- Note 1: XT, HS or LP oscillator mode assumed.
 - 2: Tost = 1024Tosc (drawing not to scale) This delay will not be there for RC osc mode.
 - 3: GIE = '1' assumed. In this case after wake-up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.
 - 4: CLKOUT is not available in these osc modes, but shown here for timing reference.

13.9 **Program Verification/Code Protection**

Applicable Devices 61 62 62 A R 62 63 64 64 A R 64 65 65 A

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Microchip does not recommend code protecting windowed devices.

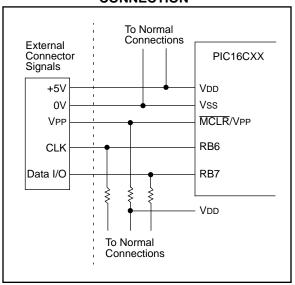
13.10 **ID Locations**

Applicable Devices 61|62|62A|R62|63|64|64A|R64|65|65A

Four memory locations (2000h - 2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify. It is recommended that only the 4 least significant bits of the ID location are used.

For ROM devices, these values are submitted along with the ROM code.

13.11 **In-Circuit Serial Programming**


Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The PIC16CXX microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a program/verify mode by holding pins RB6 and RB7 low while raising the MCLR (VPP) pin from VIL to VIHH (see programming specification). RB6 becomes the programming clock and RB7 becomes the programming data. Both RB6 and RB7 are Schmitt Trigger inputs in this mode.

After reset, to place the device in program/verify mode, the program counter (PC) is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14-bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the PIC16C6X/7X Programming Specifications (Literature #DS30228).

FIGURE 13-24: TYPICAL IN-CIRCUIT SERIAL **PROGRAMMING** CONNECTION

14.0 INSTRUCTION SET SUMMARY

Applicable Devices 61 62 62 A R62 63 64 64 A R64 65 65 A

Each PIC16CXX instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXX instruction set summary in Table 14-2 lists byte-oriented, bit-oriented, and literal and control operations. Table 14-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 14-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
х	Don't care location (= 0 or 1) The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1
label	Label name
TOS	Top of Stack
PC	Program Counter
PCLATH	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer/Counter
TO	Time-out bit
PD	Power-down bit
dest	Destination either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
<>	Register bit field
€	In the set of
italics	User defined term (font is courier)

PIC16C6X

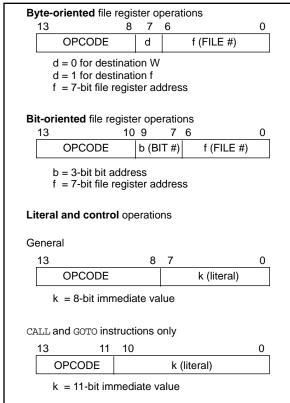
The instruction set is highly orthogonal and is grouped into three basic categories:

- · Byte-oriented operations
- · Bit-oriented operations
- · Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μs . If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μs .

Table 14-2 lists the instructions recognized by the MPASM assembler.

Figure 14-1 shows the three general formats that the instructions can have.


Note: To maintain upward compatibility with future PIC16CXX products, <u>do not use</u> the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 14-1: GENERAL FORMAT FOR INSTRUCTIONS

14.1 <u>Special Function Registers as</u> Source/Destination

The PIC16C6X's orthogonal instruction set allows read and write of all file registers, including special function registers. There are some special situations the user should be aware of:

14.1.1 STATUS AS DESTINATION

If an instruction writes to STATUS, the Z, C and DC bits may be set or cleared as a result of the instruction and overwrite the original data bits written. For example, executing CLRF STATUS will clear register STATUS, and then set the Z bit leaving 0000 0100b in the register.

14.1.2 PCL AS SOURCE OR DESTINATION

Read, write or read-modify-write on PCL may have the following results:

Read PC: $PCL \rightarrow dest$ Write PCL: $PCLATH \rightarrow PCH$:

8-bit destination value → PCL

Read-Modify-Write: PCL→ ALU operand

PCLATH \rightarrow PCH; 8-bit result \rightarrow PCL

Where PCH = program counter high byte (not an addressable register), PCLATH = Program counter high holding latch, dest = destination, WREG or f.

14.1.3 BIT MANIPULATION

All bit manipulation instructions are done by first reading the entire register, operating on the selected bit and writing the result back (read-modify-write). The user should keep this in mind when operating on special function registers, such as ports.

TABLE 14-2: PIC16CXX INSTRUCTION SET

Mnemonic,		Description	Cycles		14-Bit	Opcode	е	Status	Notes	
Operands				MSb			LSb	Affected		
BYTE-ORIE	BYTE-ORIENTED FILE REGISTER OPERATIONS									
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2	
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2	
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2	
CLRW	-	Clear W	1	00	0001	0xxx	XXXX	Z		
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2	
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2	
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3	
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2	
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3	
IORWF	f, d	Inclusive OR W with f	ì	00	0100	dfff	ffff	Z	1,2	
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2	
MOVWF	f	Move W to f	1	00	0000	lfff	ffff			
NOP	-	No Operation	1	00	0000	0xx0	0000			
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2	
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2	
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2	
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff	-, -,	1,2	
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2	
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS								
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2	
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2	
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3	
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3	
LITERAL AI	ND CO	NTROL OPERATIONS								
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z		
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z		
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk			
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk			
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z		
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk			
RETFIE	-	Return from interrupt	2	00	0000	0000	1001			
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk			
RETURN	-	Return from Subroutine	2	00	0000	0000	1000			
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD		
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z		
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z Z		
Note 4		LO resistantia del l'Ordina del Caralta de								

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

^{2:} If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

^{3:} If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

14.2 <u>Instruction Descriptions</u>

ADDLW	Add Literal and W	ANDLW	AND Literal with W			
Syntax:	[<i>label</i>] ADDLW k	Syntax:	[<i>label</i>] ANDLW k			
Operands:	$0 \le k \le 255$	Operands:	$0 \leq k \leq 255$			
Operation:	$(W) + k \to (W)$	Operation:	(W) .AND. (k) \rightarrow (W)			
Status Affected:	C, DC, Z	Status Affected:	Z			
Encoding:	11 111x kkkk kkkk	Encoding:	11 1001 kkkk kkkk			
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.	Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.			
Words:	1	Words:	1			
Cycles:	1	Cycles:	1			
Example	ADDLW 0x15	Example	ANDLW 0x5F			
	Before Instruction $W = 0x10$ After Instruction $W = 0x25$		Before Instruction W = 0xA3 After Instruction W = 0x03			

ADDWF	Add W and f	ANDWF	AND W with f				
Syntax:	[label] ADDWF f,d	Syntax:	[label] ANDWF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$	Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	$(W) + (f) \to (dest)$	Operation:	(W) .AND. (f) \rightarrow (dest)				
Status Affected:	C, DC, Z	Status Affected:	Z				
Encoding:	00 0111 dfff ffff	Encoding:	00 0101 dfff ffff				
Description:	Add the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.	Description:	AND the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.				
Words:	1	Words:	1				
Cycles:	1	Cycles:	1				
Example	ADDWF FSR, 0	Example	ANDWF FSR, 1				
	Before Instruction W = 0x17 FSR = 0xC2 After Instruction W = 0xD9 FSR = 0xC2		Before Instruction W = 0x17 FSR = 0xC2 After Instruction W = 0x17 FSR = 0x02				

BCF	Bit Clear	f			
Syntax:	[<i>label</i>] BC	CF f,b			
Operands:	$0 \le f \le 12$ $0 \le b \le 7$.7			
Operation:	$0 \rightarrow (f < b)$	>)			
Status Affected:	None				
Encoding:	01	00bb	bfff	ffff	
Description:	Bit 'b' in re	gister 'f' is	s cleared.		
Words:	1				
Cycles:	1				
Example	BCF	FLAG_	REG, 7		
	Before In After Inst	FLAG_RE	EG = 0xC7		

FLAG_REG = 0x47

BTFSC	Bit Test, Skip if Clear						
Syntax:	[label] BTFSC f,b						
Operands:	$0 \le f \le 127$ $0 \le b \le 7$						
Operation:	skip if $(f < b >) = 0$						
Status Affected:	None	None					
Encoding:	01	10bb	ob bfff ffff				
Description:	instruction If bit 'b' is fetched du execution	register 'f' is n is skipped. '0' then the uring the cu is discarde instead, ma n.	next instru rrent instru d, and a N	ction ction OP is			
Words:	1						
Cycles:	1(2)						
Example	HERE FALSE TRUE	BTFSC GOTO • •	FLAG,1 PROCESS_	CODE			
	Before In	struction					
	After Inst	ruction if FLAG<1> PC = 6 if FLAG<1>	→ = 0, address T				

BSF	Bit Set f					
Syntax:	[<i>label</i>] BS	SF f,b				
Operands:	$0 \le f \le 12$ $0 \le b \le 7$	27				
Operation:	$1 \rightarrow (f < b)$	>)				
Status Affected:	None					
Encoding:	01 01bb bfff ffff					
Description:	Bit 'b' in re	gister 'f' is	s set.			
Words:	1					
Cycles:	1					
Example	BSF	FLAG_R	EG, 7			
	Before In	FLAG_RE	: EG = 0x0 <i>F</i>	A		
		FLAG_RE	EG = 0x8A	Ą		

BTFSS	Bit Test f	, Skip if S	et			
Syntax:	[label] BTFSS f,b					
Operands:	$0 \le f \le 127$ $0 \le b < 7$					
Operation:	skip if $(f < b >) = 1$					
Status Affected:	None					
Encoding:	01	11bb	bfff	ffff		
Description:	If bit 'b' in register 'f' is '1' then the next instruction is skipped. If bit 'b' is '1', then the next instruction fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a 2 cycle instruction.					
Words:	1					
Cycles:	1(2)					
Example	HERE FALSE TRUE		FLAG,1 PROCESS_	CODE		
	Before In	struction				
	After Inst	ruction if FLAG<1> PC = 4 if FLAG<1>	· = 0, address F#			

CLRF	Clear f				
Syntax:	[<i>label</i>] C	LRF f			
Operands:	$0 \le f \le 12$	27			
Operation:	$\begin{array}{c} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$)			
Status Affected:	Z				
Encoding:	00	0001	1ff	f	ffff
Description:	The conte and the Z		ister '	f' are	cleared
Words:	1				
Cycles:	1				
Example	CLRF	FLAC	G_REG	3	
	Before In	FLAG_RE	-	=	0x5A
		FLAG_RE	ĒG	=	0x00
		Z		=	1

CALL	Call Subroutine				
Syntax:	[label] CALL k				
Operands:	$0 \le k \le 2047$				
Operation:	$ \begin{aligned} & (PC)\text{+ }1 \rightarrow TOS, \\ & k \rightarrow PC < 10:0>, \\ & (PCLATH < 4:3>) \rightarrow PC < 12:11> \end{aligned} $				
Status Affected:	None				
Encoding:	10 0kkk kkkk kkkk				
Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two cycle instruction.				
Words:	1				
Cycles:	2				
Example	HERE CALL THERE				
	Before Instruction PC = Address HERE After Instruction PC = Address THERE				
	TOS = Address HERE+1				

CLRW	Clear W			
Syntax:	[label] CLF	RW		
Operands:	None			
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$			
Status Affected:	Z			
Encoding:	00 00	01	0xxx	xxxx
Description:	W register is cl	eare	d. Zero bit	(Z) is
Words:	1			
Cycles:	1			
Evample	CLRW			
Example	CLIKW			
Example	Before Instru	ction	1	
Example		=	ox5A	
Ехатріе	Before Instru W	=		

CLRWDT	Clear Watchdog Timer					
Syntax:	[label] CLRWDT					
Operands:	None					
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$					
Status Affected:	TO, PD					
Encoding:	00 0000 0110 0100					
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.					
Words:	1					
Cycles:	1					
Example	CLRWDT					
	Before Instruction WDT counter = ? After Instruction					
	WDT counter = 0x00 WDT prescaler= 0					
	<u>TO</u> = 1					
	PD = 1					

DECF	Decrement f					
Syntax:	[label] DECF f,d					
Operands:	$0 \le f \le 127$ $d \in [0,1]$					
Operation:	(f) - 1 \rightarrow (dest)					
Status Affected:	Z					
Encoding:	00 0011 dfff ffff					
Description:	Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.					
Words:	1					
Cycles:	1					
Example	DECF CNT, 1					
	Before Instruction $\begin{array}{rcl} CNT & = & 0x01 \\ Z & = & 0 \end{array}$ After Instruction $\begin{array}{rcl} CNT & = & 0x00 \\ Z & = & 1 \end{array}$					

COMF	Compler	nent f				
Syntax:	[label]	COMF	f,d			
Operands:	$0 \le f \le 127$ $d \in [0,1]$					
Operation:	$(\overline{f}) \rightarrow (de)$	st)				
Status Affected:	Z					
Encoding:	00	1001	dff	f	ffff	
Description:	The contents of register 'f' are complemented. If 'd' is 0 the result is stored in W. If 'd' is 1 the result is stored back in register 'f'.					
Words:	1					
Cycles:	1					
Example	COMF	REG	G1,0			
	After Inst	REG1	= = = =	0x13 0x13 0xE0		

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) - 1 \rightarrow (dest); skip if result = 0
Status Affected:	None
Encoding:	00 1011 dfff ffff
Description:	The contents of register 'f' are decremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded. A NOP is executed instead making it a two cycle instruction.
Words:	1
Cycles:	1(2)
Example	HERE DECFSZ CNT, 1 GOTO LOOP CONTINUE • •
	Before Instruction PC = address HERE After Instruction CNT = CNT - 1 if CNT = 0, PC = address CONTINUE if CNT ≠ 0, PC = address HERE+1

GOTO	Unconditional Branch				
Syntax:	[label]	GOTO	k		
Operands:	$0 \le k \le 20$	047			
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>				
Status Affected:	None				
Encoding:	10	1kkk	kkkk	kkkk	
Description:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two cycle instruction.				
Words:	1				
Cycles:	2				
Example	GOTO TH	HERE			
	After Inst	ruction PC =	Address	THERE	

INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0
Status Affected:	None
Encoding:	00 1111 dfff ffff
Description:	The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded. A NOP is executed instead making it a two cycle instruction.
Words:	1
Cycles:	1(2)
Example	HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • •
	Before Instruction PC = address HERE After Instruction CNT = CNT + 1 if CNT= 0, PC = address CONTINUE if CNT≠ 0, PC = address HERE +1

INCF	Increme	nt f			
Syntax:	[label]	INCF	f,d		
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	(f) + 1 \rightarrow	(dest)			
Status Affected:	Z				
Encoding:	00	1010	dff	f	ffff
Description:	The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.				
Words:	1				
Cycles:	1				
Example	INCF	CNT,	1		
	After Inst	CNT Z) = = = =	0xFF 0 0x00 1	

IORLW	Inclusive OR Literal with W
Syntax:	[label] IORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .OR. $k \rightarrow$ (W)
Status Affected:	Z
Encoding:	11 1000 kkkk kkkk
Description:	The contents of the W register is OR'ed with the eight bit literal 'k'. The result is placed in the W register.
Words:	1
Cycles:	1
Example	IORLW 0x35
	Before Instruction W = 0x9A
	After Instruction
	W = 0xBF Z = 1

IORWF	Inclusive OR W with f
Syntax:	[label] IORWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(W) .OR. (f) \rightarrow (dest)
Status Affected:	Z
Encoding:	00 0100 dfff ffff
Description:	Inclusive OR the W register with register 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
Words:	1
Cycles:	1
Example	IORWF RESULT, 0
	Before Instruction RESULT = 0x13 W = 0x91 After Instruction RESULT = 0x13 W = 0x93 Z = 1

MOVF	Move f		
Syntax:	[label] MOVF f,d		
Operands:	$0 \le f \le 127$ $d \in [0,1]$		
Operation:	$(f) \to (dest)$		
Status Affected:	Z		
Encoding:	00 1000 dfff ffff		
Description:	The contents of register f is moved to a destination dependant upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.		
Words:	1		
Cycles:	1		
Example	MOVF FSR, 0		
	After Instruction W = value in FSR register Z = 1		

MOVLW	Move Lit	eral to V	V	
Syntax:	[label]	MOVLW	/ k	
Operands:	$0 \le k \le 25$	55		
Operation:	$k \to (W)$			
Status Affected:	None			
Encoding:	11	00xx	kkkk	kkkk
Description:	The eight register. The as 0's.			
Words:	1			
Cycles:	1			
Example	MOVLW	0x5A		
	After Inst	ruction W =	0x5A	

MOVWF	Move W to f
Syntax:	[label] MOVWF f
Operands:	$0 \le f \le 127$
Operation:	(W) o (f)
Status Affected:	None
Encoding:	00 0000 1fff ffff
Description:	Move data from W register to register 'f'.
Words:	1
Cycles:	1
Example	MOVWF OPTION
	Before Instruction OPTION = 0xFF W = 0x4F After Instruction OPTION = 0x4F W = 0x4F

PIC16C6X

NOP	No Oper	ration		
Syntax:	[label]	NOP		
Operands:	None			
Operation:	No opera	ation		
Status Affected:	None			
Encoding:	00	0000	0xx0	0000
Description:	No operat	tion.		
Words:	1			
Cycles:	1			
Example	NOP			

RETFIE	Return fı	rom Inte	rrupt	
Syntax:	[label]	RETFIE		
Operands:	None			
Operation:	$TOS \to F$ $1 \to GIE$	PC,		
Status Affected:	None			
Encoding:	00	0000	0000	1001
Description:	and Top of the PC. In ting Globa	f Stack (T terrupts a I Interrupt (7>). This	re enabled	ded in l by set- t, GIE
Words:	1			
Cycles:	2			
Example	RETFIE			
		rrupt PC = GIE =	TOS 1	

OPTION	Load Op	tion Reç	gister	
Syntax:	[label]	OPTION	١	
Operands:	None			
Operation:	$(W) \rightarrow O$	PTION		
Status Affected:	None			
Encoding:	00	0000	0110	0010
Description: Words:	The contelloaded in tinstruction patibility with Since OPT register, thit.	the OPTIC is suppor ith PIC16 IION is a	ON registe rted for co C5X produ readable/\	r. This de com- ucts. vritable
	1			
Cycles: Example	1			
		re PIC16	rd compa CXX prod uction.	-

RETLW	Return with Literal in W		
Syntax:	[label] RETLW k		
Operands:	$0 \le k \le 255$		
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC		
Status Affected:	None		
Encoding:	11 01xx kkkk kkkk		
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two cycle instruction.		
Words:	1		
Cycles:	2		
Example	CALL TABLE ;W contains table ;offset value : ;W now has table value :		
TABLE	ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ;		
	Before Instruction		
	W = 0x07 After Instruction		
	W = value of k8		

RETURN Return from Subroutine [label] RETURN Syntax: Operands: None $\mathsf{TOS} \to \mathsf{PC}$ Operation: Status Affected: None Encoding: 0000 0000 1000 Return from subroutine. The stack is Description: POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle instruction. 1 Words: Cycles: 2 Example RETURN After Interrupt TOS PC =

RRF Rotate Right f through Carry RRF f,d Syntax: [label] $0 \le f \le 127$ Operands: $d \in [0,1]$ Operation: See description below Status Affected: С 00 1100 dfff ffff Encoding: The contents of register 'f' are rotated Description: one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. Register f Words: 1 Cycles: 1 Example RRF REG1,0 Before Instruction REG1 1110 0110 0 After Instruction REG1 1110 0110 W 0111 0011 С

RLF Rotate Left f through Carry Syntax: RLF [label] Operands: $0 \le f \le 127$ $d \in [0,1]$ Operation: See description below Status Affected: С 1101 dfff ffff Encoding: 00 Description: The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'. Register f Words: 1 Cycles: 1 Example RLF REG1,0 Before Instruction 1110 0110 REG1 С 0 After Instruction REG1 1110 0110 W 1100 1100 С 1

Syntax: [label] SLEEP Operands: None $00h \rightarrow WDT$, Operation: $0 \rightarrow WDT$ prescaler, $1 \rightarrow \overline{10}$ $0 \rightarrow \overline{PD}$ TO. PD Status Affected: Encoding: 0000 0110 0011 The power-down status bit, \overline{PD} is Description: cleared. Time-out status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See Section 13.8 for more details. Words: Cycles: Example: SLEEP

SLEEP

SUBLW	Subtract W from Literal	SUBWF	Subtract W from f
Syntax:	[label] SUBLW k	Syntax:	[label] SUBWF f,d
Operands:	$0 \le k \le 255$	Operands:	$0 \le f \le 127$
Operation:	$k - (W) \rightarrow (W)$		$d \in [0,1]$
Status	C, DC, Z	Operation:	$(f) - (W) \to (dest)$
Affected:		Status	C, DC, Z
Encoding:	11 110x kkkk kkkk	Affected:	00 0010 1555 5555
Description:	The W register is subtracted (2's complement method) from the eight bit literal	Encoding: Description:	Subtract (2's complement method) W reg-
	'k'. The result is placed in the W register.	Doddingson.	ister from register 'f'. If 'd' is 0 the result is
Words:	1		stored in the W register. If 'd' is 1 the result is stored back in register 'f'.
Cycles:	1	Words:	1
Example 1:	SUBLW 0x02	Cycles:	1
	Before Instruction	Example 1:	SUBWF REG1,1
	W = 1 C = ?		Before Instruction
	After Instruction		REG1 = 3
	W = 1		W = 2 C = ?
	C = 1; result is positive		After Instruction
Example 2:	Before Instruction		REG1 = 1
	W = 2		W = 2
	C = ?		C = 1; result is positive
	After Instruction	Example 2:	Before Instruction
	W = 0 C = 1; result is zero		REG1 = 2 W = 2
Example 3:	Before Instruction		C = ?
	W = 3		After Instruction
	C = ?		REG1 = 0
	After Instruction		W = 2 C = 1; result is zero
	W = 0xFF C = 0; result is nega-	Example 3:	Before Instruction
	tive		REG1 = 1
			W = 2
			C = ?
			After Instruction
			REG1 = 0xFF W = 2
			C = 0; result is negative

SWAPF	Swap Nibbles in f
Syntax:	[label] SWAPF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	$ \begin{array}{l} (f\texttt{<}3\texttt{:}0\texttt{>}) \to (dest\texttt{<}7\texttt{:}4\texttt{>}), \\ (f\texttt{<}7\texttt{:}4\texttt{>}) \to (dest\texttt{<}3\texttt{:}0\texttt{>}) \end{array} $
Status Affected:	None
Encoding:	00 1110 dfff ffff
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'.
Words:	1
Cycles:	1
Example	SWAPF REG, 0
	Before Instruction
	REG1 = 0xA5
	After Instruction
	REG1 = 0xA5 W = 0x5A

XORLW	Exclusive OR Literal with W			
Syntax:	[label]	XORLV	V k	
Operands:	$0 \leq k \leq 255$			
Operation:	(W) .XOR. $k \rightarrow (W)$			
Status Affected:	Z			
Encoding:	11	1010	kkkk	kkkk
Description:	The conte XOR'ed w The resulter.	vith the ei	ght bit lite	ral 'k'.
Words:	1			
Cycles:	1			
Example:	XORLW	0xAF		
	Before Instruction			
		W =	0xB5	
	After Instruction			
		W =	0x1A	

TRIS	Load TRIS Register			
Syntax:	[label]	TRIS	f	
Operands:	$5 \le f \le 7$			
Operation:	$(W) \rightarrow TF$	RIS regis	ter f;	
Status Affected:	None			
Encoding:	00	0000	0110	Offf
Description:	compatibil ucts. Since	ity with th e TRIS re vritable, th	ipported for e PIC16Ct gisters are ne user car	5X prod- read-
Words:	1			
Cycles:	1			
Example				
	To maintain upward compatibility with future PIC16CXX products, do not use this instruction.			

XORWF	Exclusive OR W with f		
Syntax:	[<i>label</i>] XORWF f,d		
Operands:	$0 \le f \le 127$ $d \in [0,1]$		
Operation:	(W) .XOR. (f) \rightarrow (dest)		
Status Affected:	Z		
Encoding:	00 0110 dfff ffff		
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.		
Words:	1		
Cycles:	1		
Example	XORWF REG 1		
	Before Instruction		
	$ \begin{array}{rcl} REG & = & 0xAF \\ W & = & 0xB5 \end{array} $		
	After Instruction		
	$ REG = 0x1A \\ W = 0xB5 $		

PIC16C6X

NOTES:

15.0 DEVELOPMENT SUPPORT

15.1 <u>Development Tools</u>

The PIC16/17 microcontrollers are supported with a full range of hardware and software development tools:

- PICMASTER/PICMASTER CE Real-Time In-Circuit Emulator
- ICEPIC Low-Cost PIC16C5X and PIC16CXXX In-Circuit Emulator
- PRO MATE® II Universal Programmer
- PICSTART[®] Plus Entry-Level Prototype Programmer
- PICDEM-1 Low-Cost Demonstration Board
- PICDEM-2 Low-Cost Demonstration Board
- PICDEM-3 Low-Cost Demonstration Board
- MPASM Assembler
- MPLAB-SIM Software Simulator
- MPLAB-C (C Compiler)
- Fuzzy logic development system (fuzzyTECH[®]–MP)

15.2 <u>PICMASTER: High Performance</u> <u>Universal In-Circuit Emulator with</u> MPLAB IDE

The PICMASTER Universal In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for all microcontrollers in the PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX and PIC17CXX families. PICMASTER is supplied with the MPLAB™ Integrated Development Environment (IDE), which allows editing, "make" and download, and source debugging from a single environment.

Interchangeable target probes allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the PICMASTER allows expansion to support all new Microchip microcontrollers.

The PICMASTER Emulator System has been designed as a real-time emulation system with advanced features that are generally found on more expensive development tools. The PC compatible 386 (and higher) machine platform and Microsoft Windows® 3.x environment were chosen to best make these features available to you, the end user.

A CE compliant version of PICMASTER is available for European Union (EU) countries.

15.3 <u>ICEPIC: Low-cost PIC16CXXX</u> In-Circuit Emulator

ICEPIC is a low-cost in-circuit emulator solution for the Microchip PIC16C5X and PIC16CXXX families of 8-bit OTP microcontrollers.

ICEPIC is designed to operate on PC-compatible machines ranging from $286\text{-AT}^{\circledcirc}$ through PentiumTM based machines under Windows 3.x environment. ICEPIC features real time, non-intrusive emulation.

15.4 PRO MATE II: Universal Programmer

The PRO MATE II Universal Programmer is a full-featured programmer capable of operating in stand-alone mode as well as PC-hosted mode.

The PRO MATE II has programmable VDD and VPP supplies which allows it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for displaying error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In standalone mode the PRO MATE II can read, verify or program PIC16C5X, PIC16CXXX, PIC17CXX and PIC14000 devices. It can also set configuration and code-protect bits in this mode.

15.5 <u>PICSTART Plus Entry Level</u> <u>Development System</u>

The PICSTART programmer is an easy-to-use, low-cost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. PICSTART Plus is not recommended for production programming.

PICSTART Plus supports all PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX and PIC17CXX devices with up to 40 pins. Larger pin count devices such as the PIC16C923 and PIC16C924 may be supported with an adapter socket.

15.6 <u>PICDEM-1 Low-Cost PIC16/17</u> Demonstration Board

The PICDEM-1 is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The users can program the sample microcontrollers provided with the PICDEM-1 board, on a PRO MATE II or PICSTART-16B programmer, and easily test firmware. The user can also connect the PICDEM-1 board to the PICMASTER emulator and download the firmware to the emulator for testing. Additional prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push-button switches and eight LEDs connected to PORTB.

15.7 PICDEM-2 Low-Cost PIC16CXX Demonstration Board

The PICDEM-2 is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-2 board, on a PRO MATE II programmer or PICSTART-16C, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-2 board to test firmware. Additional prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push-button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the I²C bus and separate headers for connection to an LCD module and a keypad.

15.8 PICDEM-3 Low-Cost PIC16CXXX Demonstration Board

The PICDEM-3 is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with a LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-3 board, on a PRO MATE II programmer or PICSTART Plus with an adapter socket, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-3 board to test firmware. Additional prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features

include an RS-232 interface, push-button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM-3 board is an LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM-3 provides an additional RS-232 interface and Windows 3.1 software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals. PICDEM-3 will be available in the 3rd quarter of 1996.

15.9 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

The MPLAB IDE Software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a windows based application which contains:

- · A full featured editor
- · Three operating modes
 - editor
 - emulator
 - simulator
- · A project manager
- · Customizable tool bar and key mapping
- · A status bar with project information
- · Extensive on-line help

MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC16/17 tools (automatically updates all project information)
- · Debug using:
 - source files
 - absolute listing file
- Transfer data dynamically via DDE (soon to be replaced by OLE)
- · Run up to four emulators on the same PC

The ability to use MPLAB with Microchip's simulator allows a consistent platform and the ability to easily switch from the low cost simulator to the full featured emulator with minimal retraining due to development tools.

15.10 Assembler (MPASM)

The MPASM Universal Macro Assembler is a PC-hosted symbolic assembler. It supports all microcontroller series including the PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX, and PIC17CXX families.

MPASM offers full featured Macro capabilities, conditional assembly, and several source and listing formats. It generates various object code formats to support Microchip's development tools as well as third party programmers.

MPASM allow full symbolic debugging from the Microchip Universal Emulator System (PICMASTER).

MPASM has the following features to assist in developing software for specific use applications.

- Provides translation of Assembler source code to object code for all Microchip microcontrollers.
- · Macro assembly capability.
- Produces all the files (Object, Listing, Symbol, and special) required for symbolic debug with Microchip's emulator systems.
- Supports Hex (default), Decimal and Octal source and listing formats.

MPASM provides a rich directive language to support programming of the PIC16/17. Directives are helpful in making the development of your assemble source code shorter and more maintainable.

15.11 Software Simulator (MPLAB-SIM)

The MPLAB-SIM Software Simulator allows code development in a PC host environment. It allows the user to simulate the PIC16/17 series microcontrollers on an instruction level. On any given instruction, the user may examine or modify any of the data areas or provide external stimulus to any of the pins. The input/output radix can be set by the user and the execution can be performed in; single step, execute until break, or in a trace mode.

MPLAB-SIM fully supports symbolic debugging using MPLAB-C and MPASM. The Software Simulator offers the low cost flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

15.12 C Compiler (MPLAB-C)

The MPLAB-C Code Development System is a complete 'C' compiler and integrated development environment for Microchip's PIC16/17 family of microcontrollers. The compiler provides powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compiler provides symbol information that is compatible with the MPLAB IDE memory display (PICMASTER emulator software versions 1.13 and later).

15.13 <u>Fuzzy Logic Development System</u> (fuzzyTECH-MP)

fuzzyTECH-MP fuzzy logic development tool is available in two versions - a low cost introductory version, MP Explorer, for designers to gain a comprehensive working knowledge of fuzzy logic system design; and a full-featured version, fuzzyTECH-MP, edition for implementing more complex systems.

Both versions include Microchip's $fuzzyLAB^{\text{\tiny TM}}$ demonstration board for hands-on experience with fuzzy logic systems implementation.

15.14 <u>MP-DriveWay™ – Application Code</u> <u>Generator</u>

MP-DriveWay is an easy-to-use Windows-based Application Code Generator. With MP-DriveWay you can visually configure all the peripherals in a PIC16/17 device and, with a click of the mouse, generate all the initialization and many functional code modules in C language. The output is fully compatible with Microchip's MPLAB-C C compiler. The code produced is highly modular and allows easy integration of your own code. MP-DriveWay is intelligent enough to maintain your code through subsequent code generation.

15.15 <u>SEEVAL® Evaluation and</u> <u>Programming System</u>

The SEEVAL SEEPROM Designer's Kit supports all Microchip 2-wire and 3-wire Serial EEPROMs. The kit includes everything necessary to read, write, erase or program special features of any Microchip SEEPROM product including Smart Serials™ and secure serials. The Total Endurance™ Disk is included to aid in tradeoff analysis and reliability calculations. The total kit can significantly reduce time-to-market and result in an optimized system.

15.16 <u>TrueGauge[®] Intelligent Battery</u> Management

The TrueGauge development tool supports system development with the MTA11200B TrueGauge Intelligent Battery Management IC. System design verification can be accomplished before hardware prototypes are built. User interface is graphically-oriented and measured data can be saved in a file for exporting to Microsoft Excel.

15.17 <u>Keeloq® Evaluation and</u> <u>Programming Tools</u>

KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters.

TABLE 15-1: DEVELOPMENT TOOLS FROM MICROCHIP

		PIC12C5XX	PIC14000	PIC16C5X	PIC16CXXX	PIC16C6X	PIC16C7XX	PIC16C8X	PIC16C9XX	PIC17CXX	24CXX 25CXX 93CXX	HCS200 HCS300 HCS301
roducts	PICMASTER®/ PICMASTER-CE In-Circuit Emulator	7	>	7	7	7	7	7	7	7		
Emulator F	ICEPIC Low-Cost In-Circuit Emulator	7		7	7	7	7	7				
,	MPLAB TM Integrated Development Environment	7	7	7	7	7	>	7	>	7		
slo	MPLAB™ C Compiler	7	>	>	7	>	7	7	7	>		
oT əาswito	fuzzyTECH®-MP Explorer/Edition Fuzzy Logic Dev. Tool	7	7	7	7	7	>	7	>	>		
3	MP-DriveWay™ Applications Code Generator			7	7	7	>	7		7		
	Total Endurance™ Software Model										7	
	PICSTART® Lite Ultra Low-Cost Dev. Kit			7		7	>	7				
ยเมเล	PICSTART® Plus Low-Cost Universal Dev. Kit	7	7	7	7	7	>	7	7	7		
Progr	PRO MATE® II Universal Programmer	7	7	7	7	7	7	7	7	7	7	7
	KEELOQ [®] Programmer											7
	SEEVAL [®] Designers Kit										>	
ards	PICDEM-1			7	>			7		7		
o Bo	PICDEM-2					'	>					
məq	PICDEM-3								>			
	KEELOQ® Evaluation Kit											7

16.0 ELECTRICAL CHARACTERISTICS FOR PIC16C61

Absolute Maximum Ratings †

Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Total power dissipation (Note 1)	800 mW
Maximum current out of Vss pin	150 mA
Maximum current into VDD pin	100 mA
Input clamp current, IIK (VI < 0 or VI > VDD)	±20 mA
Output clamp current, Iok (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	20 mA
Maximum current sunk by PORTA	80 mA
Maximum current sourced by PORTA	50 mA
Maximum current sunk by PORTB	150 mA
Maximum current sourced by PORTB	100 mA

Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - Σ IOH} + Σ {(VDD-VOH) x IOH} + Σ (VOI x IOL)

Note 2: Voltage spikes below Vss at the \overline{MCLR} pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the \overline{MCLR} pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 16-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C61-04	PIC16C61-20	PIC16LC61-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 µA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 1.8 mA typ. at 5.5V IPD: 1.0 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 1.4 mA typ. at 3.0V IPD: 0.6 μA typ. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 µA max. at 4V Freq: 4 MHz max.
XT	VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 1.8 mA typ. at 5.5V IPD: 1.0 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 1.4 mA typ. at 3.0V IPD: 0.6 µA typ. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 μA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.0 μA typ. at 4.5V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.0 μA typ. at 4.5V Freq: 20 MHz max.	Do not use in HS mode	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.0 μA typ. at 4.5V Freq: 20 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 15 μA typ. at 32 kHz, 4.0V IPD: 0.6 μA typ. at 4.0V Freq: 200 kHz max.	Do not use in LP mode	VDD: 3.0V to 6.0V IDD: 32 μA max. at 32 kHz, 3.0V IPD: 9 μA max. at 3.0V Freq: 200 kHz max.	VDD: 3.0V to 6.0V IDD: 32 μA max. at 32 kHz, 3.0V IPD: 9 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

PIC16C6X

Applicable Devices | 61 | 62 | 62A | R62 | 63 | 64 | 64A | R64 | 65 | 65A

16.1 DC Characteristics: PIC16C61-04 (Commercial, Industrial, Automotive) PIC16C61-20 (Commercial, Industrial, Automotive)

		Standa	rd Opei	rating (Condi	tions (เ	unless otherwise stated)
DC CHAR	ACTERISTICS	Operatir	ng temp	erature	e -40)°C ≤	TA ≤ +125°C for automotive,
DO OTIAN	ACTEMICTION					_	TA ≤ +85°C for industrial and
					0°0) ≤	TA ≤ +70°C for commercial
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001	Supply Voltage	VDD	4.0	-	6.0	V	XT, RC and LP osc configuration
D001A			4.5	-	5.5	V	HS osc configuration
D002*	RAM Data Retention Voltage (Note 1)	VDR	-	1.5	-	V	Device in SLEEP mode
D003	VDD start voltage to ensure internal Poweron Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D010	Supply Current (Note 2)	IDD	-	1.8	3.3	mA	FOSC = 4 MHz, VDD = 5.5V (Note 4)
D013			-	13.5	30	mA	HS osc configuration (PIC16C61-20) Fosc = 20 MHz, VDD = 5.5V
D020	Power-down Current	IPD	-	7	28	μΑ	VDD = 4.0V, WDT enabled, -40°C to +85°C
D021	(Note 3)		-	1.0	14	μΑ	VDD = 4.0V, WDT disabled, -0°C to +70°C
D021A			-	1.0	16	μΑ	VDD = 4.0V, WDT disabled, -40°C to +85°C
D021B			-	1.0	20	μΑ	VDD = 4.0V, WDT disabled, -40°C to +125°C

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,
 - MCLR = VDD; WDT enabled/disabled as specified.
 - 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
 - 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

16.2 DC Characteristics: PIC16LC61-04 (Commercial, Industrial)

		Standa	rd Ope	rating (Condi	tions (u	ınless otherwise stated)
DC CHA	ARACTERISTICS	Operatir	ng temp	perature			TA ≤ +85°C for industrial and
	1		1		0°C		T _A ≤ +70°C for commercial
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001	Supply Voltage	VDD	3.0	-	6.0	V	XT, RC, and LP osc configuration
D002*	RAM Data Retention Voltage (Note 1)	VDR	-	1.5	-	V	Device in SLEEP mode
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D010	Supply Current (Note 2)	IDD	-	1.4	2.5	mA	FOSC = 4 MHz, VDD = 3.0V (Note 4)
D010A			-	15	32	μΑ	Fosc = 32 kHz, VDD = 3.0V, WDT disabled, LP osc configuration
D020	Power-down Current	IPD	-	5	20	μΑ	VDD = 3.0V, WDT enabled, -40°C to +85°C
D021	(Note 3)		-	0.6	9	μΑ	VDD = 3.0V, WDT disabled, 0°C to +70°C
D021A			-	0.6	12	μΑ	VDD = 3.0V, WDT disabled, -40°C to +85°C

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,
 - MCLR = VDD; WDT enabled/disabled as specified.
 - 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
 - 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

DC CHARACTERISTICS

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

16.3 **DC Characteristics:** PIC16C61-04 (Commercial, Industrial, Automotive)

PIC16C61-20 (Commercial, Industrial, Automotive)

PIC16LC61-04 (Commercial, Industrial, Automotive)

Standard Operating Conditions (unless otherwise stated)

-40°C Operating temperature \leq TA \leq +125°C for automotive, -40°C \leq TA \leq +85°C for industrial and

0°C \leq TA \leq +70°C for commercial

Operating voltage VDD range as described in DC spec Section 16.1 and

Section 16.2.

Param	Characteristic	Sym	Min	Typ†	Max	Units	Conditions
No.							
	Input Low Voltage						
	I/O ports	VIL					
D030	with TTL buffer		Vss	-	0.8V	V	
D031	with Schmitt Trigger buffer		Vss	-	0.2VDD	V	
D032	MCLR, RA4/T0CKI,OSC1 (in RC mode)		Vss	-	0.2VDD	V	
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3VDD	V	Note1
	Input High Voltage						
	I/O ports	VIH		-			
D040	with TTL buffer		0.36VDD	-	VDD	V	4.5V ≤ VDD ≤ 5.5V
D040A			0.45VDD	-	VDD		For VDD > 5.5V or VDD < 4.5V
D041	with Schmitt Trigger buffer		0.85VDD	-	VDD	V	For entire VDD range
D042	MCLR, RA4/T0CKI		0.85VDD	-	VDD	V	
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	VDD	V	Note1
D043	OSC1 (in RC mode)		0.9VDD	-	VDD	V	
D070	PORTB weak pull-up current	IPURB	50	250	† 400	μΑ	VDD = 5V, VPIN = VSS
	Input Leakage Current (Notes 2, 3)						
D060	I/O ports	lı∟	-	-	±1	μΑ	Vss ≤ VPIN ≤ VDD, Pin at himpedance
D061	MCLR, RA4/T0CKI		-	-	±5	μΑ	Vss ≤ VPIN ≤ VDD
D063	OSC1		-	-	±5	μΑ	$\label{eq:VSS} \mbox{Vpin} \leq \mbox{Vdd, XT, HS and} \\ \mbox{LP osc configuration}$
	Output Low Voltage						
D080	I/O ports	VOL	-	-	0.6	V	IOL = 8.5 mA , VDD = 4.5V , -40°C to $+85^{\circ}\text{C}$
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

^{2:} The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

^{3:} Negative current is defined as coming out of the pin.

Standard Operating Conditions (unless otherwise stated)

Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for automotive, $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for industrial and

 0° C $\leq TA \leq +70^{\circ}$ C for commercial

Operating voltage VDD range as described in DC spec Section 16.1 and

Section 16.2.

Param No.	Characteristic	Sym	Min	Typ†	Max	Units	Conditions
	Output High Voltage						
D090	I/O ports (Note 3)	Vон	VDD-0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C
D090A			VDD-0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5 V, -40 °C to $+125$ °C
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	IOH = -1.3 mA, VDD = $4.5V$, $-40^{\circ}C$ to $+85^{\circ}C$
D092A			VDD-0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V, -40°C to +125°C
	Capacitive Loading Specs on Output Pins						
D100	OSC2 pin	Cosc ₂			15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.
D101	All I/O pins and OSC2 (in RC mode)	Cio			50	pF	

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.
 - 2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 - 3: Negative current is defined as coming out of the pin.

DC CHARACTERISTICS

PIC16C6X

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

16.4 <u>Timing Parameter Symbology</u>

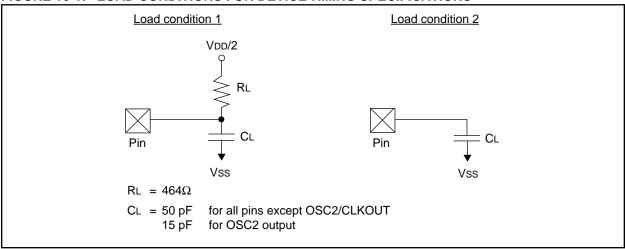
The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS	3. Tcc:st	(I ² C specifications only)
2. TppS	4. Ts	(I ² C specifications only)

Т			
F F	requency	T	Time

Lowercase letters (pp) and their meanings:

рр			
СС	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	t0	T0CKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR


Uppercase letters and their meanings:

	ee ieuere aria uron meaninger		
S			
F	Fall	Р	Period
Н	High	R	Rise
ı	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low

Tcc:st (I²C specifications only)

CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

FIGURE 16-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

16.5 <u>Timing Diagrams and Specifications</u>

FIGURE 16-2: EXTERNAL CLOCK TIMING

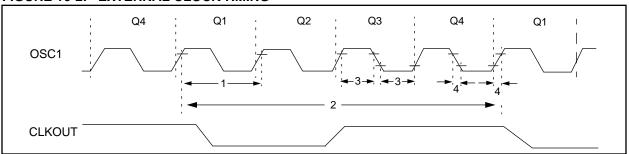


TABLE 16-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC		4	MHz	XT and RC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (PIC16C61-04,
			DC	_	20	MHz	HS osc mode (PIC16C61-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			1	_	4	MHz	HS osc mode (PIC16C61-04,
			1	_	20	MHz	HS osc mode (PIC16C61-20)
1	Tosc	External CLKIN Period (Note 1)	250	_	_	ns	XT and RC osc mode
			250	_	_	ns	HS osc mode (PIC16C61-04,
			50	_	_	ns	HS osc mode (PIC16C61-20)
			5	_	_	μs	LP osc mode
		Oscillator Period	250	_	_	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	1,000	ns	HS osc mode (PIC16C61-04,
			50	_	1,000	ns	HS osc mode (PIC16C61-20)
			5			μs	LP osc mode
2	TCY	Instruction Cycle Time (Note 1)	1.0	Tcy	DC	μs	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	50	_	_	ns	XT oscillator
	TosH	LowTime	2.5	_	_	μs	LP oscillator
			10			ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	25	_		ns	XT oscillator
	TosF	Fall Time	50	_	_	ns	LP oscillator
			15	_	_	ns	HS oscillator

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 16-3: CLKOUT AND I/O TIMING

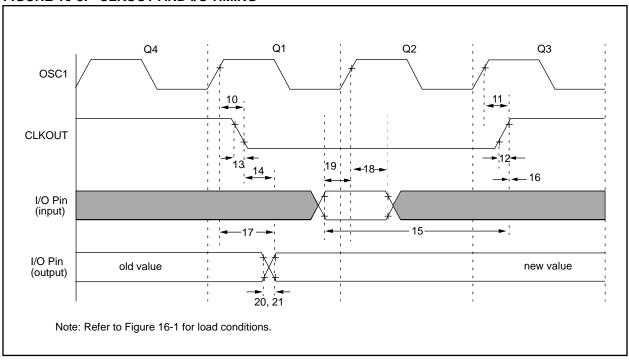


TABLE 16-3: CLKOUT AND I/O TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		_	15	30	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑		_	15	30	ns	Note 1
12*	TckR	CLKOUT rise time		_	5	15	ns	Note 1
13*	TckF	CLKOUT fall time		_	5	15	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out val	id	_	_	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKO	0.25Tcy + 25	_	_	ns	Note 1	
16*	TckH2iol	Port in hold after CLKOUT	0	_	_	ns	Note 1	
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port	_	_	80 - 100	ns		
18*	TosH2ioI	OSC1↑ (Q2 cycle) to Port (I/O in hold time)	input invalid	TBD	_	_	ns	
19*	TioV2osH	Port input valid to OSC1 [†] time)	(I/O in setup	TBD	_	_	ns	
20*	TioR	Port output rise time	PIC16C61	_	10	25	ns	
			PIC16LC61	_	_	60	ns	
21*	TioF	Port output fall time	PIC16C61	_	10	25	ns	
			PIC16LC61		_	60	ns	
22††*	Tinp	RB0/INT pin high or low ti	me	20	_	_	ns	
23††*	Trbp	RB7:RB4 change int high	or low time	20	_	_	ns	

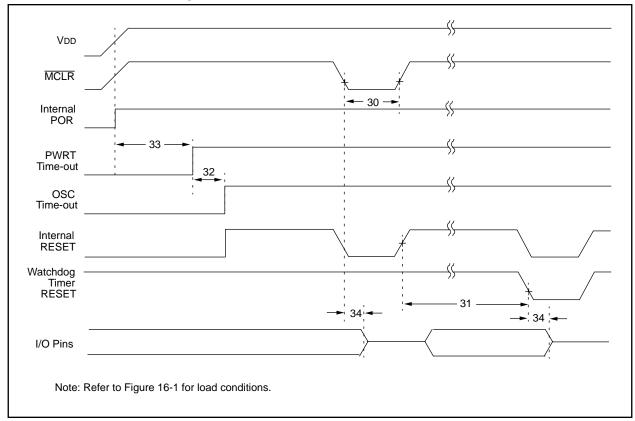
^{*} These parameters are characterized but not tested.

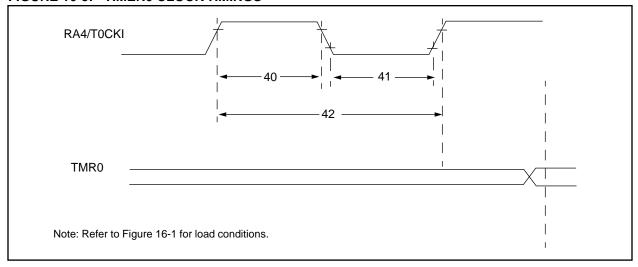
[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested

^{††} These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

FIGURE 16-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING




TABLE 16-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30*	TmcL	MCLR Pulse Width (low)	200	_	_	ns	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	_	1024Tosc	_		Tosc = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34*	Tıoz	I/O Hi-impedance from MCLR Low	_	_	100	ns	

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 16-5: TIMERO CLOCK TIMINGS

TABLE 16-5: TIMERO CLOCK REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5Tcy + 20	_	_	ns	
			With Prescaler	10	_	_	ns	
41*	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5Tcy + 20	_	_	ns	
			With Prescaler	10	_	_	ns	
42*	Tt0P	TOCKI Period		Greater of: 20 μs or TCY + 40 N	_	_	ns	N = prescale value (2, 4,, 256)

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

17.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C61

The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.

In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range.

Note: The data presented in this section is a statistical summary of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution while 'max' or 'min' represents (mean +3σ) and (mean -3σ) respectively where σ is standard deviation.

FIGURE 17-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE

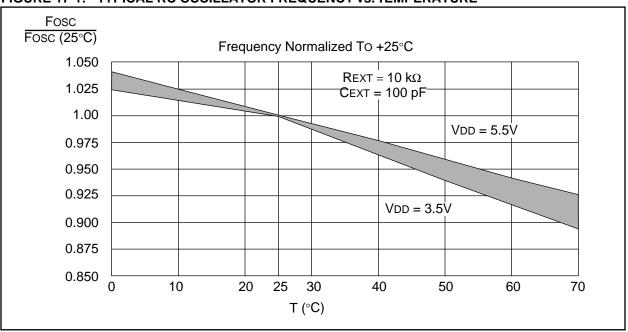


TABLE 17-1: RC OSCILLATOR FREQUENCIES

Cext	Rext	Average Fosc @ 5V, 25°C			
20 pF	4.7k	4.52 MHz	± 17.35%		
	10k	2.47 MHz	± 10.10%		
	100k	290.86 kHz	± 11.90%		
100 pF	3.3k	1.92 MHz	± 9.43%		
	4.7k	1.48 MHz	± 9.83%		
	10k	788.77 kHz	± 10.92%		
	100k	88.11 kHz	± 16.03%		
300 pF	3.3k	726.89 kHz	± 10.97%		
	4.7k	573.95 kHz	± 10.14%		
	10k	307.31 kHz ± 10.43%			
	100k	33.82 kHz	± 11.24%		

The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ± 3 standard deviation from average value for VDD = 5V.

Applicable Devices | 61 | 62 | 62A | R62 | 63 | 64 | 64A | R64 | 65 | 65A |

FIGURE 17-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

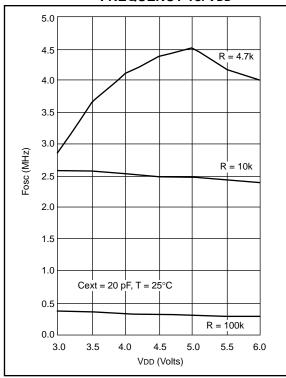


FIGURE 17-3: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

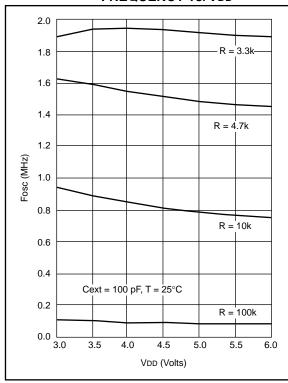


FIGURE 17-4: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

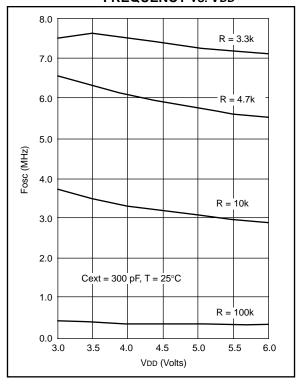


FIGURE 17-5: TYPICAL IPD VS. VDD WATCHDOG TIMER DISABLED 25°C

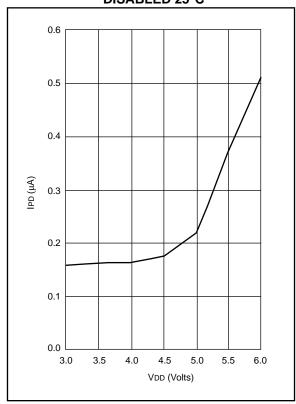
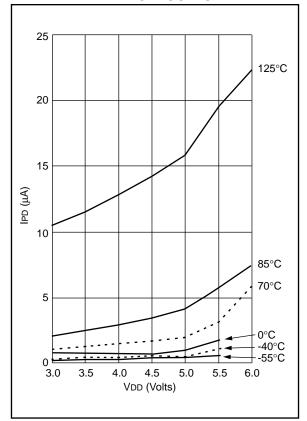



FIGURE 17-6: TYPICAL IPD VS. VDD WATCHDOG TIMER ENABLED 25°C

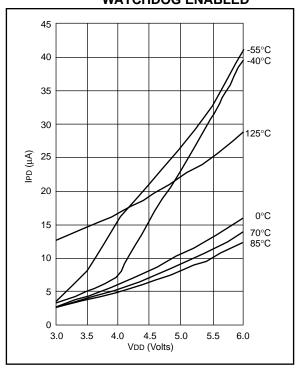


FIGURE 17-7: MAXIMUM IPD VS. VDD WATCHDOG DISABLED

Data based on matrix samples. See first page of this section for details.

FIGURE 17-8: MAXIMUM IPD VS. VDD WATCHDOG ENABLED*

*IPD, with Watchdog Timer enabled, has two components: The leakage current which increases with higher temperature and the operating current of the Watchdog Timer logic which increases with lower temperature. At -40°C, the latter dominates explaining the apparently anomalous behavior.

FIGURE 17-9: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS vs.

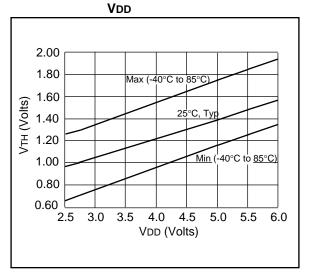


FIGURE 17-10: VIH, VIL OF MCLR, TOCKI AND OSC1 (IN RC MODE) vs. VDD

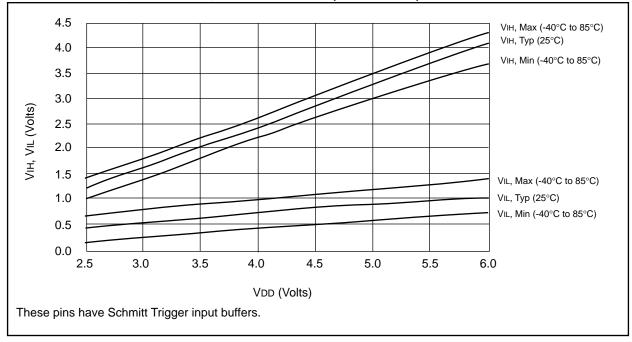


FIGURE 17-11: VTH (INPUT THRESHOLD VOLTAGE) OF OSC1 INPUT (IN XT, HS, AND LP MODES) VS. VDD

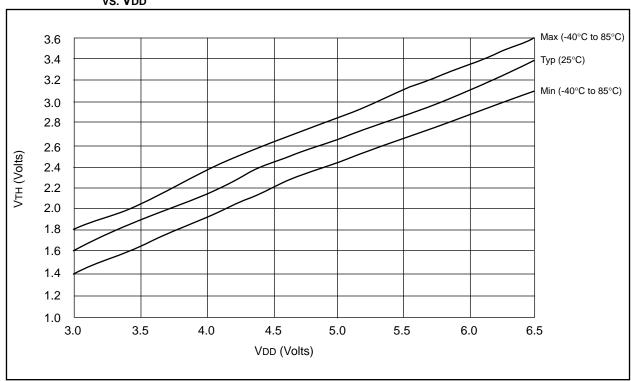


FIGURE 17-12: TYPICAL IDD VS. FREQUENCY (EXTERNAL CLOCK, 25°C)

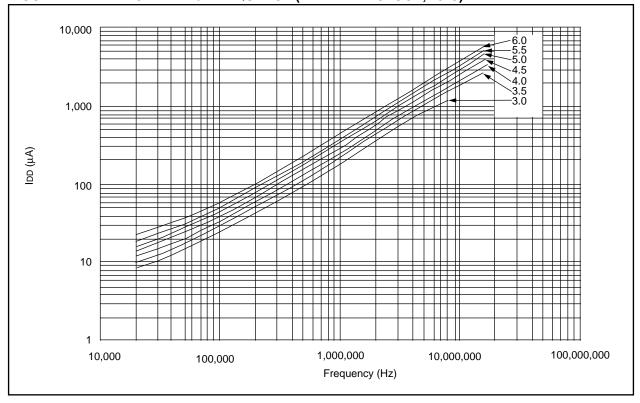


FIGURE 17-13: MAXIMUM IDD vs. FREQUENCY (EXTERNAL CLOCK, -40° TO +85°C)

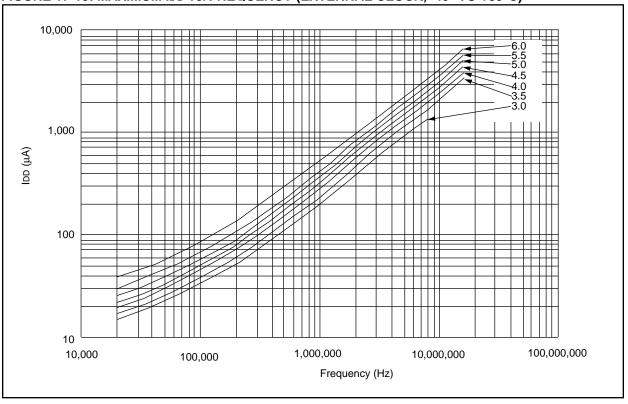


FIGURE 17-14: MAXIMUM IDD VS. FREQUENCY (EXTERNAL CLOCK, -55° TO +125°C)

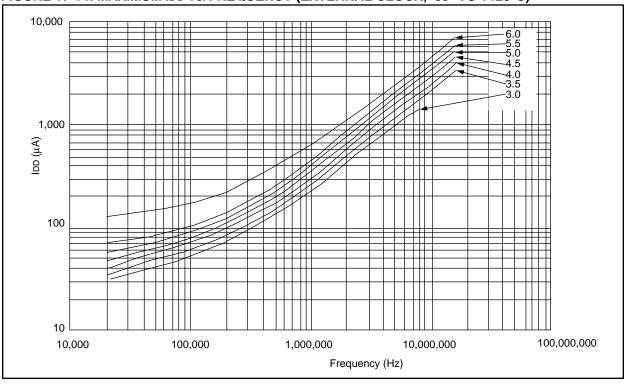


FIGURE 17-15: WDT TIMER TIME-OUT PERIOD vs. VDD

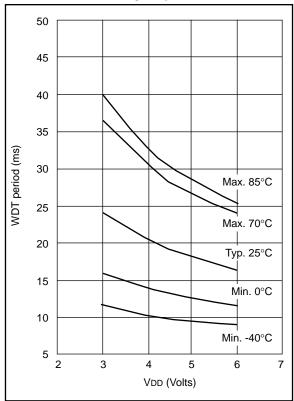
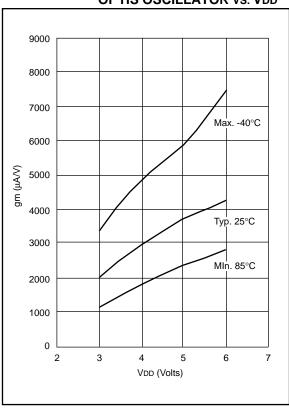



FIGURE 17-16: TRANSCONDUCTANCE (gm)
OF HS OSCILLATOR vs. VDD

Data based on matrix samples. See first page of this section for details.

FIGURE 17-17: TRANSCONDUCTANCE (gm)
OF LP OSCILLATOR vs. VDD

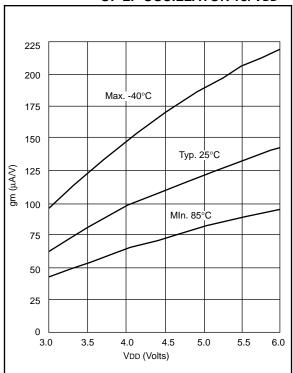


FIGURE 17-18: TRANSCONDUCTANCE (gm)
OF XT OSCILLATOR vs. VDD

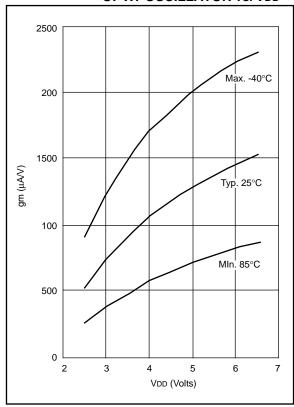


FIGURE 17-19: IOH VS. VOH, VDD = 3V

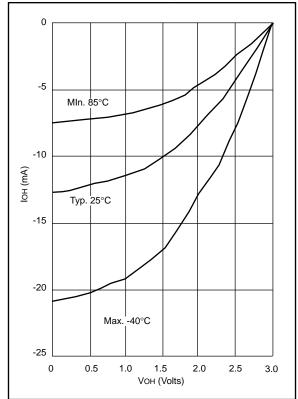


FIGURE 17-20: IOH VS. VOH, VDD = 5V

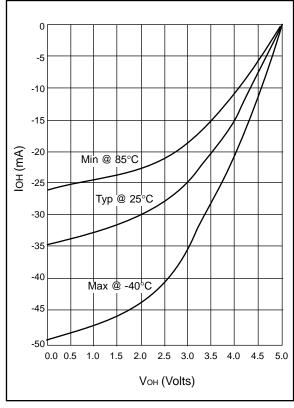


FIGURE 17-21: IOL VS. VOL, VDD = 3V

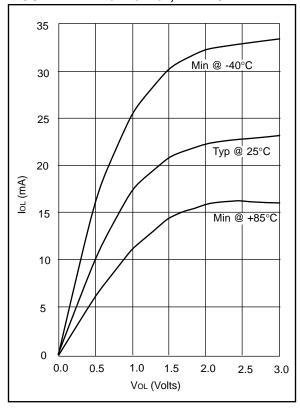


FIGURE 17-22: IOL VS. VOL, VDD = 5V

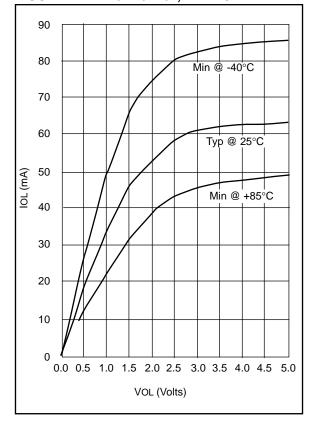


TABLE 17-2: INPUT CAPACITANCE*

Pin Name	Typical Capacitance (pF)						
	18L PDIP	18L SOIC					
RA port	5.0	4.3					
RB port	5.0	4.3					
MCLR	17.0	17.0					
OSC1/CLKIN	4.0	3.5					
OSC2/CLKOUT	4.3	3.5					
TOCKI	3.2	2.8					

*All capacitance values are typical at 25° C. A part to part variation of $\pm 25\%$ (three standard deviations) should be taken into account.

PIC16C6X

 Applicable Devices
 61
 62
 62A
 R62
 63
 64
 64A
 R64
 65
 65A

NOTES:

18.0 ELECTRICAL CHARACTERISTICS FOR PIC16C62/64

Absolute Maximum Ratings †

Ambient temperature under bias	55 to +85°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	
Voltage on VDD with respect to Vss	
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	
Input clamp current, Iik (VI < 0 or VI > VDD)	±20 mA
Output clamp current, lox (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE* (combined)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE* (combined)	200 mA
Maximum current sunk by PORTC and PORTD* (combined)	200 mA
Maximum current sourced by PORTC and PORTD* (combined)	200 mA
* PORTD and PORTE not available on the PIC16C62.	

PORTD and PORTE not available on the PIC16C62.

Note 2: Voltage spikes below Vss at the \overline{MCLR} pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the \overline{MCLR} pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 18-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C62-04 PIC16C64-04	PIC16C62-10 PIC16C64-10	PIC16C62-20 PIC16C64-20	PIC16LC62-04 PIC16LC64-04	JW Devices
RC	VDD: 4.0V to 6.0V	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V	VDD: 3.0V to 6.0V	VDD: 4.0V to 6.0V
	IDD: 3.8 mA max. at 5.5V	, ,	IDD: 2.0 mA typ. at 5.5V	1	IDD: 3.8 mA max. at 5.5V
	IPD: 21 μA max. at 4V	IPD: 1.5 μA typ. at 4V	IPD: 1.5 μA typ. at 4V	IPD: 0.9 μA typ. at 3V	IPD: 21 μA max. at 4V
	Freq:4 MHz max.	Freq:4 MHz max.	Freq:4 MHz max.	Freq: 4 MHz max.	Freq:4 MHz max.
XT	VDD: 4.0V to 6.0V	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V	VDD: 3.0V to 6.0V	VDD: 4.0V to 6.0V
	IDD: 3.8 mA max. at 5.5V	IDD: 2.0 mA typ. at 5.5V	IDD: 2.0 mA typ. at 5.5V	IDD: 2.0 mA typ. at 3.0V	IDD: 3.8 mA max. at 5.5V
	IPD: 21 μA max. at 4V	IPD: 1.5 μA typ. at 4V	IPD: 1.5 μA typ. at 4V	IPD: 0.9 μA typ. at 3.0V	IPD: 21 μA max. at 4V
	Freq:4 MHz max.	Freq:4 MHz max.	Freq:4 MHz max.	Freq: 4 MHz max.	Freq:4 MHz max.
HS	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V		VDD: 4.5V to 5.5V
	IDD: 13.5 mA typ. at 5.5V	IDD: 15 mA max. at 5.5V	IDD: 30 mA max. at 5.5V	Do not use in HS mode	IDD: 30 mA max. at 5.5V
	IPD: 1.5 μA typ. at 4.5V	IPD: 1.5 μA typ. at 4.5V	IPD: 1.5 μA typ. at 4.5V		IPD: 1.5 μA typ. at 4.5V
	Freq:4 MHz max.	Freq: 10 MHz max.	Freq: 20 MHz max.		Freq: 20 MHz max.
LP	VDD: 4.0V to 6.0V			VDD: 3.0V to 6.0V	VDD: 3.0V to 6.0V
	IDD: 52.5 μA typ.			IDD: 48 μA max.	IDD: 48 μA max.
	at 32 kHz, 4.0V	Do not use in LP mode	Do not use in LP mode	at 32 kHz, 3.0V	at 32 kHz, 3.0V
	IPD: 0.9 μA typ. at 4.0V			IPD: 13.5 μA max. at 3.0V	IPD: 13.5 μA max. at 3.0V
	Freq:200 kHz max.			Freq:200 kHz max.	Freq:200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - Σ IOH} + Σ {(VDD-VOH) x IOH} + Σ (VOI x IOL)

PIC16C6X

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

PIC16C62-04, PIC16C64-04 (Commercial, Industrial) 18.1 DC Characteristics:

PIC16C62-10, PIC16C64-10 (Commercial, Industrial)

PIC16C62-20, PIC16C64-20 (Commercial, Industrial)

Standard Operating Conditions (unless otherwise stated)									
DC CHAR	ACTERISTICS	Operating temperature -40°C ≤ TA ≤ +85°C for industrial and							
					0°C) ≤	STA ≤ +70°C for commercial		
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions		
D001	Supply Voltage	VDD	4.0	_	6.0	V	XT, RC and LP osc configuration		
D001A	Cuppiy voltage	VDD	4.5	-	5.5	V	HS osc configuration		
D002*	RAM Data Retention Voltage (Note 1)	VDR	-	1.5	-	V	Device in SLEEP mode		
D003	VDD start voltage to ensure internal Power- on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details		
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details		
D010	Supply Current (Note 2, 5)	IDD	-	2.7	5.0	mA	XT, RC, osc configuration (PIC16C62/64-04) FOSC = 4 MHz, VDD = 5.5V (Note 4)		
D013			-	13.5	30	mA	HS osc configuration (PIC16C62/64-20) Fosc = 20 MHz, VDD = 5.5V		
D020	Power-down Current	IPD	-	10.5	42	μΑ	VDD = 4.0V, WDT enabled, -40°C to +85°C		
D021	(Note 3, 5)		-	1.5	21	μΑ	$VDD = 4.0V$, WDT disabled, $-0^{\circ}C$ to $+70^{\circ}C$		
D021A			-	1.5	24	μΑ	VDD = 4.0V, WDT disabled, -40°C to +85°C		

- These parameters are characterized but not tested.
- Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD
 - MCLR = VDD; WDT enabled/disabled as specified.
 - 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
 - 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
 - 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.

18.2 DC Characteristics: PIC16LC62-04, PIC16LC64-04 (Commercial, Industrial)

DC CHA	ARACTERISTICS	Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for industrial and 0°C ≤ TA ≤ +70°C for commercial							
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions		
D001	Supply Voltage	VDD	3.0	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)		
D002*	RAM Data Retention Voltage (Note 1)	VDR	-	1.5	-	V	Device in SLEEP mode		
D003	VDD start voltage to ensure internal Poweron Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details		
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details		
D010	Supply Current (Note 2, 5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration FOSC = 4 MHz, VDD = 3.0V (Note 4)		
D010A			-	22.5	48	μА	LP osc configuration FOSC = 32 kHz, VDD = 3.0V, WDT disabled		
D020	Power-down Current	IPD	-	7.5	30	μΑ	VDD = 3.0V, WDT enabled, -40°C to +85°C		
D021	(Note 3, 5)		-	0.9	13.5	μΑ	VDD = 3.0V, WDT disabled, 0°C to +70°C		
D021A			-	0.9	18	μΑ	VDD = 3.0V, WDT disabled, -40°C to +85°C		

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD
 - MCLR = VDD; WDT enabled/disabled as specified.
 - 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
 - 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
 - 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.

DC CHARACTERISTICS

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

18.3 PIC16C62-04, PIC16C64-04 (Commercial, Industrial) DC Characteristics:

> PIC16C62-10, PIC16C64-10 (Commercial, Industrial) PIC16C62-20, PIC16C64-20 (Commercial, Industrial) PIC16LC62-04, PIC16LC64-04 (Commercial, Industrial)

> > Standard Operating Conditions (unless otherwise stated)

-40°C \leq TA \leq +85°C for industrial and Operating temperature

0°C ≤ TA ≤ +70°C for commercial

Operating voltage VDD range as described in DC spec Section 18.1

	and Section 18.2								
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions		
No.				†					
	Input Low Voltage								
	I/O ports	VIL							
D030	with TTL buffer		Vss	-	0.5V	V			
D031	with Schmitt Trigger buffer		Vss	-	0.2Vdd	V			
D032	MCLR, RA4/T0CKI,OSC1 (in RC mode)		Vss	-	0.2Vdd	V			
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3VDD	V	Note1		
	Input High Voltage								
	I/O ports	VIH							
D040	with TTL buffer		2.0	-	VDD	V	4.5V ≤ VDD ≤ 5.5V		
D040A			0.8VDD	-	VDD	V	For VDD > 5.5V or VDD < 4.5V		
D041	with Schmitt Trigger buffer		0.8VDD	-	VDD		For entire VDD range		
D042	MCLR, RA4/T0CKI, RC7:RC4, RD7:RD4, RB0/INT		0.8VDD	-	VDD	V			
D042A	RE2:RE0, OSC1 (XT, HS and LP)		0.7Vdd	_	VDD	V	Note1		
D042A	OSC1 (in RC mode)		0.7 VDD 0.9VDD		VDD	V	Note		
D043	PORTB weak pull-up current	Inuna	50			•	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
D070	1	IPURB	50	200	400	μΑ	VDD = 5V, VPIN = VSS		
Doco	Input Leakage Current (Notes 2, 3)	1			1.4		Man < Man < Man Din et hi		
D060	I/O ports	lıL	-	-	±1	μΑ	Vss ≤ VPIN ≤ VDD, Pin at hi- impedance		
D061	MCLR, RA4/T0CKI		-	-	±5	μΑ	Vss ≤ VPIN ≤ VDD		
D063	OSC1		-	-	±5	μA	Vss ≤ VPIN ≤ VDD, XT, HS and LP osc configuration		
	Output Low Voltage						-		
D080	I/O ports	VOL	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C		
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C		
	Output High Voltage								
D090	I/O ports (Note 3)	Vон	VDD-0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C		
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°C to +85°C		

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

^{2:} The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input volt-

^{3:} Negative current is defined as coming out of the pin.

		Standard Operating Conditions (unless otherwise stated)							
		Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for industrial and							
DC CHAP				0°	C s	≤ Ta ≤ +70°C for commercial			
		Operatir	ng voltag	e VDI	range a	as desc	ribed in DC spec Section 18.1		
		and Sec	tion 18.2	2					
Param	Characteristic Sym Min Typ Max Units Condition								
No.				†					
	Capacitive Loading Specs on Output								
	Pins								
D100	OSC2 pin	Cosc ₂	-	-	15	pF	In XT, HS and LP modes		
							when external clock is used to		
							drive OSC1.		
D101	All I/O pins and OSC2 (in RC mode)	Сю	-	-	50	pF			
D102	SCL, SDA in I ² C mode	Cb	-	-	400	pF			

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.
 - 2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 - 3: Negative current is defined as coming out of the pin.

PIC16C6X

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

18.4 <u>Timing Parameter Symbology</u>

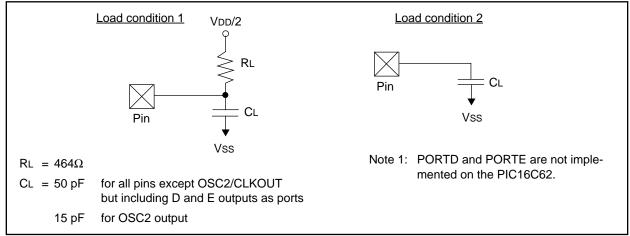
The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS	3. Tcc:st	(I ² C specifications only)
2. TppS	4 Ts	(I ² C specifications only)

T			
F	Frequency	Т	Time
•			

Lowercase letters (pp) and their meanings:

рр	,		
СС	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	ss	SS
dt	Data in	t0	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR


Uppercase letters and their meanings:

S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low

Tcc:st (I²C specifications only)

CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

FIGURE 18-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

18.5 <u>Timing Diagrams and Specifications</u>

FIGURE 18-2: EXTERNAL CLOCK TIMING

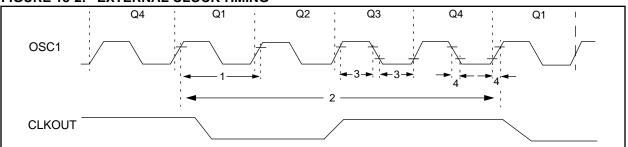


TABLE 18-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC		4	MHz	XT and RC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (PIC16C62/64-04,
			DC	_	20	MHz	HS osc mode (PIC16C62/64-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	4	MHz	HS osc mode (PIC16C62/64-04,
			4	_	10	MHz	HS osc mode (PIC16C62/64-10)
			4	_	20	MHz	HS osc mode (PIC16C62/64-20)
			5	_	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	_	_	ns	XT and RC osc mode
		(Note 1)	250	_	_	ns	HS osc mode (PIC16C62/64-04,
			100	_	_	ns	HS osc mode (PIC16C62/64-10)
			50	_	_	ns	HS osc mode (PIC16C62/64-20)
			5	_	_	μs	LP osc mode
		Oscillator Period	250	_	_	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode (PIC16C62/64-04,
			100	_	250	ns	HS osc mode (PIC16C62/64-10)
			50	_	1,000	ns	HS osc mode (PIC16C62/64-20)
			5	_		μs	LP osc mode
2	Tcy	Instruction Cycle Time (Note 1)	200	_	DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High	100	_		ns	XT oscillator
	TosH	or Low Time	2.5	_	_	μs	LP oscillator
			15			ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise		_	25	ns	XT oscillator
	TosF	or Fall Time	_	_	50	ns	LP oscillator
			_	_	15	ns	HS oscillator

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 18-3: CLKOUT AND I/O TIMING

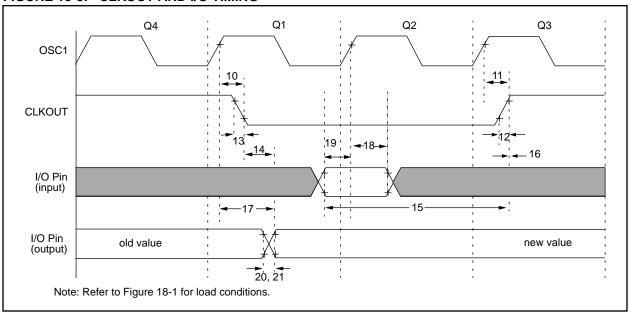


TABLE 18-3: CLKOUT AND I/O TIMING REQUIREMENTS

Parameters	Sym	Characteristic		Min	Typ†	Max	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		_	75	200	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑		_	75	200	ns	Note 1
12*	TckR	CLKOUT rise time		_	35	100	ns	Note 1
13*	TckF	CLKOUT fall time		_	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out valid		_	_	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT	\uparrow	Tosc + 200	_	_	ns	Note 1
16*	TckH2ioI	Port in hold after CLKOUT ↑		0	_	_	ns	Note 1
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out	valid	_	50	150	ns	
18*	TosH2ioI	OSC1↑ (Q2 cycle) to Port	PIC16C62/64	100	_	_	ns	
		input invalid (I/O in hold time)	PIC16LC62/64	200	_	_	ns	
19*	TioV2osH	Port input valid to OSC1↑ (I/O in setup time)		0	_	_	ns	
20*	TioR	Port output rise time	PIC16C62/64	_	10	40	ns	
			PIC16LC62/64	_	_	80	ns	
21*	TioF	Port output fall time	PIC16C62/64	_	10	40	ns	
		PIC16LC62/64		_	_	80	ns	
22††*	Tinp	INT pin high or low time	Тсу	_		ns		
23††*	Trbp	RB7:RB4 change INT high or	low time	Тсу	_		ns	

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

^{††} These parameters are asynchronous events not related to any internal clock edge.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

FIGURE 18-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

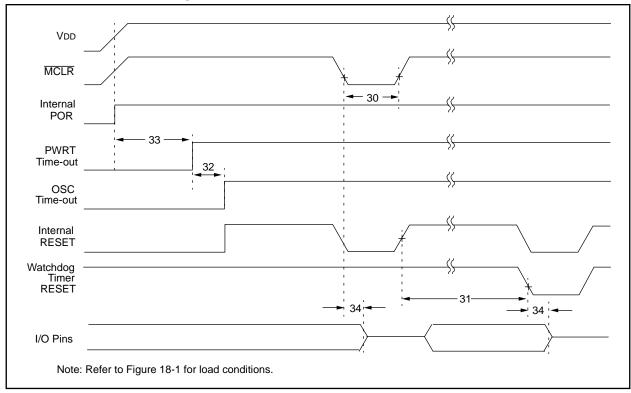


TABLE 18-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Typ†	Max	Units	Conditions
30*	TmcL	MCLR Pulse Width (low)	100	_	_	ns	VDD = 5V, -40°C to +85°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	$VDD = 5V, -40^{\circ}C \text{ to } +85^{\circ}C$
32	Tost	Oscillation Start-up Timer Period	_	1024Tosc	_	_	Tosc = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +85°C
34*	Tıoz	I/O Hi-impedance from MCLR Low		_	100	ns	

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 18-5: TIMERO AND TIMER1 CLOCK TIMINGS

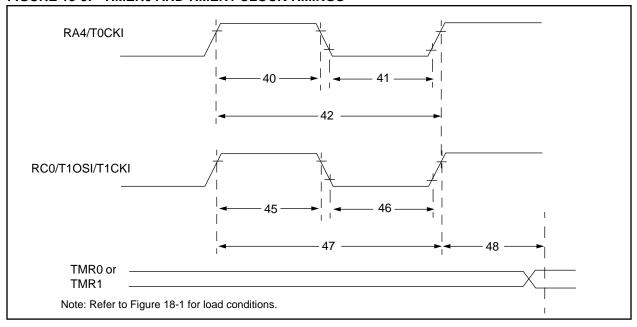


TABLE 18-5: TIMERO AND TIMER1 CLOCK REQUIREMENTS

Param No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions	
40*	Tt0H	T0CKI High Pulse	Width	No Prescaler	0.5Tcy + 20	_	_	ns		
					10	_	_	ns		
41*	Tt0L	T0CKI Low Pulse	Width	No Prescaler	0.5Tcy + 20	_	_	ns		
				With Prescaler	10	_	_	ns		
42*	Tt0P	T0CKI Period			Greater of: 20 μs or <u>Tcy + 40</u> N	_	_	ns	N = prescale value (1, 2, 4,, 256)	
45*	Tt1H	T1CKI High Time	Synchronous,	No Prescaler	0.5Tcy + 20	_	_	ns		
			Cyricini on ous,		PIC16C62/64	15	_	_	ns	
			With Prescaler	PIC16LC62/64	25	_	_	ns		
			Asynchronous		2TcY	_	_	ns		
46*	Tt1L	T1CKI Low Time	Synchronous,		0.5Tcy + 20	_	_	ns		
			Cyrioin on ous,	PIC16C62/64	15	_	_	ns		
			With Prescaler	PIC16LC62/64	25	_	_	ns		
			Asynchronous		2TcY	_	_	ns		
47*	Tt1P	T1CKI input period	Synchronous		Greater of: 20 μs or <u>Tcy + 40</u> N	_	_	ns	N = prescale value (1, 2, 4, 8)	
	Asynchronous			Greater of: 20 μs or 4Tcy		_	ns			
	Ft1		put frequency range by setting bit T1OSCEN)		DC	_	200	kHz		
48	TCKEZtmr1	Delay from externa	al clock edge to	timer increment	2Tosc		7Tosc	_		

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 18-6: CAPTURE/COMPARE/PWM TIMINGS (CCP1)

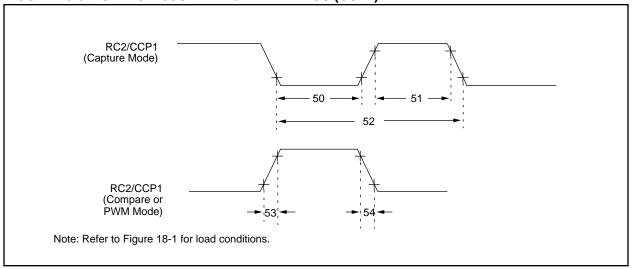


TABLE 18-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1)

Parameter No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1	No Prescaler		0.5Tcy + 20	_	_	ns	
		input low time	With Prescaler	PIC16C62/64	10	_	_	ns	
				PIC16LC62/64	20	_		ns	
51*	TccH		No Prescaler		0.5Tcy + 20	_		ns	
		input high time	With Prescaler	PIC16C62/64	10	_	_	ns	
				PIC16LC62/64	20	_		ns	
52*	TccP	CCP1 input period			3Tcy + 40 N	_		ns	N = prescale value (1,4 or 16)
53	TccR	CCP1 output rise time	е	PIC16C62/64	_	10	25	ns	
					_	25	45	ns	
54	TccF	CCP1 output fall time	,	PIC16C62/64	_	10	25	ns	
				PIC16LC62/64	_	25	45	ns	

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 18-7: PARALLEL SLAVE PORT TIMING (PIC16C64)

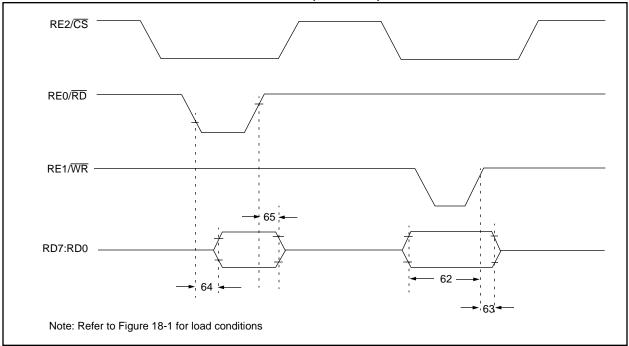


TABLE 18-7: PARALLEL SLAVE PORT REQUIREMENTS (PIC16C64)

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
62	TdtV2wrH	Data in valid before WR↑ or CS↑ (setup time)		20	_	_	ns	
63*	TwrH2dtl	WR↑ or CS↑ to data–in invalid	PIC16C64	20	_	_	ns	
		(hold time)	PIC16LC64	35	_	_	ns	
64	TrdL2dtV	RD↓ and CS↓ to data–out valid		_	_	80	ns	
65	TrdH2dtl	RD↑ or CS↑ to data–out invalid		10	_	30	ns	

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices | 61 | 62 | 62A | R62 | 63 | 64 | 64A | R64 | 65 | 65A

FIGURE 18-8: SPI MODE TIMING

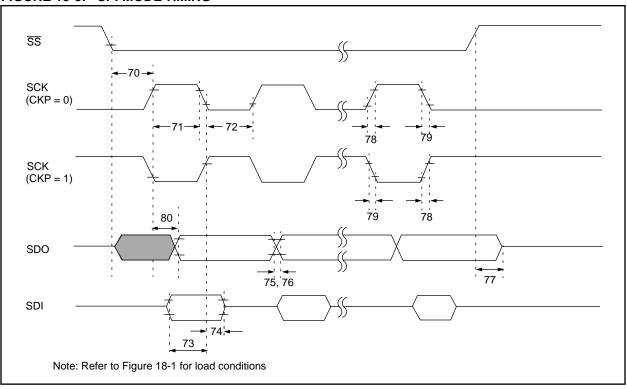


TABLE 18-8: SPI MODE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input	Tcy	_	_	ns	
71	TscH	SCK input high time (slave mode)	Tcy + 20	_	_	ns	
72	TscL	SCK input low time (slave mode)	Tcy + 20	_	_	ns	
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	50	_	_	ns	
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	50	_	_	ns	
75	TdoR	SDO data output rise time		10	25	ns	
76	TdoF	SDO data output fall time	-	10	25	ns	
77	TssH2doZ	SS↓ to SDO output hi-impedance	10	_	50	ns	
78	TscR	SCK output rise time (master mode)		10	25	ns	
79	TscF	SCK output fall time (master mode)	_	10	25	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_	_	50	ns	

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices | 61 | 62 | 62A | R62 | 63 | 64 | 64A | R64 | 65 | 65A |

FIGURE 18-9: I²C BUS START/STOP BITS TIMING

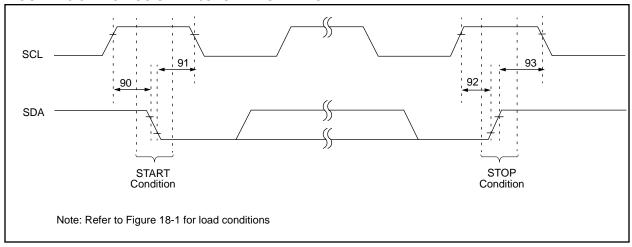
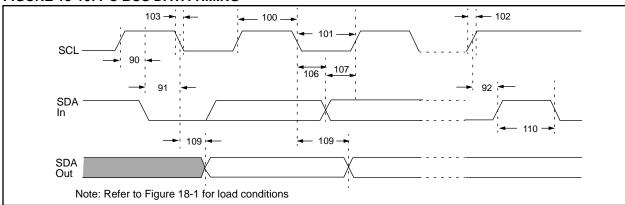



TABLE 18-9: I²C BUS START/STOP BITS REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур	Max	Units	Conditions
90	Tsu:sta	START condition	100 kHz mode	4700	_	_	no	Only relevant for repeated START
		Setup time	400 kHz mode	600	_	_	ns	condition
91	THD:STA	START condition	100 kHz mode	4000	_	_		After this period the first clock pulse is generated
		Hold time	400 kHz mode	600	_	_	ns	
92	Tsu:sto	STOP condition	100 kHz mode	4700	_	_		
		Setup time	400 kHz mode	600	_	_	ns	
93	THD:STO	STOP condition	100 kHz mode	4000	_	_	no	
		Hold time	400 kHz mode	600	_	_	ns	

FIGURE 18-10: I²C BUS DATA TIMING

TABLE 18-10: I²C BUS DATA REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions	
100	THIGH	Clock high time	100 kHz mode	4.0	_	μs	PIC16C64 must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	_	μs	PIC16C64 must operate at a minimum of 10 MHz	
			SSP Module	1.5TcY	_			
101	TLOW	Clock low time	100 kHz mode	4.7	_	μs	PIC16C64 must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3	_	μѕ	PIC16C64 must operate at a minimum of 10 MHz	
			SSP Module	1.5TcY	_			
102	Tr	SDA and SCL rise	100 kHz mode	_	1000	ns		
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF	
103	TF	SDA and SCL fall time	100 kHz mode	_	300	ns		
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF	
90	Tsu:sta	START condition	100 kHz mode	4.7	_	μs	Only relevant for repeated	
		setup time	400 kHz mode	0.6	_	μs	START condition	
91	THD:STA	START condition hold	100 kHz mode	4.0	_	μs	After this period the first clock	
		time	400 kHz mode	0.6	_	μs	pulse is generated	
106	THD:DAT	Data input hold time	100 kHz mode	0	_	ns		
			400 kHz mode	0	0.9	μs	1	
107	Tsu:dat	Data input setup time	100 kHz mode	250	_	ns	Note 2	
			400 kHz mode	100	_	ns		
92	Tsu:sto	STOP condition setup	100 kHz mode	4.7	_	μs		
		time	400 kHz mode	0.6	_	μs		
109	TAA	Output valid from	100 kHz mode	_	3500	ns	Note 1	
		clock	400 kHz mode	_	_	ns		
110	TBUF	Bus free time	100 kHz mode	4.7	_	μs	Time the bus must be free	
			400 kHz mode	1.3	_	μs	before a new transmission can start	
	Cb	Bus capacitive loading		_	400	pF		

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

^{2:} A fast-mode l²C-bus device can be used in a standard-mode l²C-bus system, but the requirement tsu;DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max. + tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode l²C bus specification) before the SCL line is released.

PIC16C6X

 Applicable Devices
 61
 62
 62A
 R62
 63
 64
 64A
 R64
 65
 65A

NOTES:

19.0 ELECTRICAL CHARACTERISTICS FOR PIC16C62A/R62/64A/R64

Absolute Maximum Ratings †

Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	
Voltage on VDD with respect to Vss	0 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Total power dissipation (Note 1)	
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, IiK (VI < 0 or VI > VDD)	±20 mA
Output clamp current, lok (Vo < 0 or Vo > VDD)	
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (combined)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (combined)	200 mA
Maximum current sunk by PORTC and PORTD (combined)	200 mA
Maximum current sourced by PORTC and PORTD (combined)	
Note 1. Power dissipation is calculated as follows: Pdis - VDD v /IDD - V IDD - V /VDD-V	$(OH) \times IOH $ $+ \sum ((VOL \times IOL))$

Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - Σ IOH} + Σ {(VDD-VOH) x IOH} + Σ (Vol x IOL)

Note 2: Voltage spikes below Vss at the \overline{MCLR} pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the \overline{MCLR} pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 19-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C62A-04 PIC16CR62-04 PIC16C64A-04 PIC16CR64-04	PIC16C62A-10 PIC16CR62-10 PIC16C64A-10 PIC16CR64-10	PIC16C62A-20 PIC16CR62-20 PIC16C64A-20 PIC16CR64-20	PIC16LC62A-04 PIC16LCR62-04 PIC16LC64A-04 PIC16LCR64-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 µA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 3.8 mA max. at 3.0V IPD: 5 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 µA max. at 4V Freq: 4 MHz max.
XT	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 µA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 3.8 mA max. at 3.0V IPD: 5 μA max. at 3.0V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 µA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 10 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 10 MHz max.	VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.	Do not use in HS mode	VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	Do not use in LP mode	Do not use in LP mode	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5 μA max. at 3.0V Freq: 200 kHz max.	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

19.1 DC Characteristics: PIC16C62A-04,PIC16C64A-04 (Commercial, Industrial, Automotive)

PIC16CR62-04,PIC16CR64-04 (Commercial, Industrial, Automotive) PIC16C62A-10,PIC16C64A-10 (Commercial, Industrial, Automotive)

PIC16C62A-10,PIC16C64A-10 (Commercial, Industrial, Automotive)

PIC16C62A-20, PIC16C64A-20 (Commercial, Industrial, Automotive)

PIC16CR62-20, PIC16CR64-20 (Commercial, Industrial, Automotive)

Standard Operating Conditions (unless otherwise stated)

DC CHARACTERISTICS

Operating temperature -40°C ≤ TA ≤ +125°C for automotive,

 -40° C \leq TA \leq +85°C for industrial and

	0°C ≤ TA ≤ +70°C for commercial									
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions			
D001 D001A	Supply Voltage	VDD	4.0 4.5	-	6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration			
D002*	RAM Data Retention Voltage (Note 1)	VDR	-	1.5	-	V	Device in SLEEP mode			
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details			
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details			
D005	Brown-out Reset Voltage	BVDD	3.7	4.0	4.3	V	BODEN bit in configuration word enabled			
			3.7	4.0	4.4	V	Automotive Range Only			
D010	Supply Current (Note 2, 5)	IDD	-	2.7	5	mA	XT, RC, osc configuration (PIC16C62A/R62/64A/R64-04) Fosc = 4 MHz, VDD = 5.5V (Note 4)			
D013			-	10	20	mA	HS osc configuration (PIC16C62A/R62/64A/R64-20) Fosc = 20 MHz, VDD = 5.5V			
D015*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μА	BOR enabled, VDD = 5.0V			

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD
 - MCLR = VDD; WDT enabled/disabled as specified.
 - 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
 - 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
 - 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
 - 6: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

DC CHA	RACTERISTICS	Standar Operatir	•	_	-40)°C ≤)°C ≤	unless otherwise stated) ⊆ TA ≤ +125°C for automotive, ⊆ TA ≤ +85°C for industrial and ⊆ TA ≤ +70°C for commercial
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D020 D021 D021A D021B	Power-down Current (Note 3, 5)	IPD	- - -	10.5 1.5 1.5 2.5	42 16 19 19	μΑ μΑ μΑ μΑ	VDD = 4.0V, WDT enabled, -40°C to +85°C VDD = 4.0V, WDT disabled, -0°C to +70°C VDD = 4.0V, WDT disabled, -40°C to +85°C VDD = 4.0V, WDT disabled, -40°C to +125°C
D023*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μΑ	BOR enabled, VDD = 5.0V

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD
 - MCLR = VDD; WDT enabled/disabled as specified.
 - 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
 - 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
 - 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
 - 6: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

19.2 DC Characteristics: PIC16LC62A-04,PIC16LCR62-04 (Commercial, Industrial) PIC16LC64A-04, PIC16LCR64-04 (Commercial, Industrial)

	Standard Operating Conditions (unless otherwise stated)							
DC CHA	RACTERISTICS	Operatir	-	_			TA ≤ +85°C for industrial and	
		•			0°C		T _A ≤ +70°C for commercial	
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions	
D001	Supply Voltage	VDD	2.5	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)	
D002*	RAM Data Retention Voltage (Note 1)	VDR	-	1.5	-	V	Device in SLEEP mode	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details	
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details	
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN bit in configuration word enabled	
D010	Supply Current (Note 2, 5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration FOSC = 4 MHz, VDD = 3.0V (Note 4)	
D010A			-	22.5	48	μΑ	LP osc configuration FOSC = 32 kHz, VDD = 3.0V, WDT disabled	
D015*	Brown-out Reset Current (Note 6)	Δlbor	-	350	425	μА	BOR enabled, VDD = 5.0V	
D020	Power-down Current	IPD	-	7.5	30	μΑ	VDD = 3.0V, WDT enabled, -40°C to +85°C	
D021	(Note 3, 5)		-	0.9	5	μΑ	VDD = 3.0V, WDT disabled, 0°C to +70°C	
D021A			-	0.9	5	μΑ	VDD = 3.0V, WDT disabled, -40°C to +85°C	
D023*	Brown-out Reset Current (Note 6)	Δ lbor	-	350	425	μΑ	BOR enabled, VDD = 5.0V	

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD
 - MCLR = VDD; WDT enabled/disabled as specified.
 - 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
 - 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
 - 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
 - 6: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

19.3 DC Characteristics:

DC CHARACTERISTICS

PIC16C62A-04,PIC16C64A-04 (Commercial, Industrial, Automotive) PIC16CR62-04,PIC16CR64-04 (Commercial, Industrial, Automotive) PIC16C62A-10,PIC16C64A-10 (Commercial, Industrial, Automotive) PIC16CR62-10,PIC16CR64-10 (Commercial, Industrial, Automotive) PIC16C62A-20,PIC16C64A-20 (Commercial, Industrial, Automotive) PIC16CR62-20,PIC16CR64-20 (Commercial, Industrial, Automotive) PIC16LC62A-04,PIC16LC64A-04 (Commercial, Industrial)

PIC16LC62A-04,PIC16LC64A-04 (Commercial, Industrial) PIC16LCR62-04,PIC16LCR64-04 (Commercial, Industrial)

Standard Operating Conditions (unless otherwise stated)

Operating temperature -40°C ≤

 40° C \leq TA \leq +125 $^{\circ}$ C for automotive,

 -40° C \leq TA \leq +85°C for industrial and

 0° C \leq TA \leq +70 $^{\circ}$ C for commercial Operating voltage VDD range as described in DC spec Section 19.1 and

Section 19.2

Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions
No.				†			
	Input Low Voltage						
	I/O ports	VIL					
D030	with TTL buffer		Vss	-	0.5V	V	
D031	with Schmitt Trigger buffer		Vss	-	0.2VDD	V	
D032	MCLR, RA4/T0CKI,OSC1 (in RC mode)		Vss	-	0.2VDD	V	
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3VDD	V	Note1
	Input High Voltage						
	I/O ports	VIH		-			
D040	with TTL buffer		2.0	-	Vdd	V	$4.5V \le VDD \le 5.5V$
D040A			0.8VDD	-	Vdd	V	For VDD > 5.5V or VDD < 4.5V
D041	with Schmitt Trigger buffer		0.8VDD	-	Vdd	V	For entire VDD range
D042	MCLR, RA4/T0CKI, RC7:RC4, RD7:RD4, RB0/INT,RE2:RE0		0.8VDD	-	VDD	V	
D042A	OSC1 (XT, HS and LP)		0.7VDD	-	Vdd	V	Note1
D043	OSC1 (in RC mode)		0.9Vdd	-	VDD	V	
D070	PORTB weak pull-up current	IPURB	50	250	400	μΑ	VDD = 5V, VPIN = VSS
	Input Leakage Current (Notes 2, 3)						
D060	I/O ports	lı∟	-	-	±1	μΑ	Vss ≤ VPIN ≤ VDD, Pin at hi-imped-
							ance
D061	MCLR, RA4/T0CKI		-	-	±5	μΑ	Vss ≤ VPIN ≤ VDD
D063	OSC1		-	-	±5	μΑ	Vss ≤ VPIN ≤ VDD, XT, HS and LP osc configuration

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

^{2:} The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

^{3:} Negative current is defined as coming out of the pin.

	Standard Operating Conditions (unless otherwise stated)						
	Operating temperature	-40°C	\leq TA \leq +125°C for automotive,				
DO OLLA DA OTERIOTIOS		-40°C	≤ TA ≤ +85°C for industrial and				
DC CHARACTERISTICS		0°C	≤ TA ≤ +70°C for commercial				
	Operating voltage VDD range as described in DC spec Section 19.1 and						
	Operating voltage VDD rang	ge as de	scribed in DC sp				

Section 19.2

Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions
No.				†			
D080	Output Low Voltage I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA , VDD = 4.5V , -40°C to $+85^{\circ}\text{C}$
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5 V, -40 °C to $+125$ °C
	Output High Voltage						
D090	I/O ports (Note 3)	Vон	VDD-0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5 V, -40 °C to $+85$ °C
D090A			VDD-0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5 V, -40 °C to $+125$ °C
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5 V, -40 °C to $+85$ °C
D092A			VDD-0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5 V, -40 °C to $+125$ °C
	Capacitive Loading Specs on Out-						
	put Pins					l _	
D100	OSC2 pin	Cosc ₂			15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.
D101	All I/O pins and OSC2 (in RC mode)	Cio			50	pF	
D102	SCL, SDA in I ² C mode	Cb			400	pF	

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.
 - 2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 - 3: Negative current is defined as coming out of the pin.

19.4 <u>Timing Parameter Symbology</u>

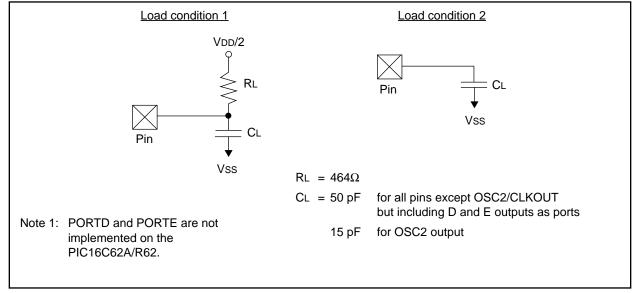
The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS3. Tcc:st(I²C specifications only)2. TppS4. Ts(I²C specifications only)

T F Frequency T Time

Lowercase letters (pp) and their meanings:

pp			
СС	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	t0	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR


Uppercase letters and their meanings:

S	-		
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low

Tcc:st (I²C specifications only)

CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

FIGURE 19-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

19.5 <u>Timing Diagrams and Specifications</u>

FIGURE 19-2: EXTERNAL CLOCK TIMING

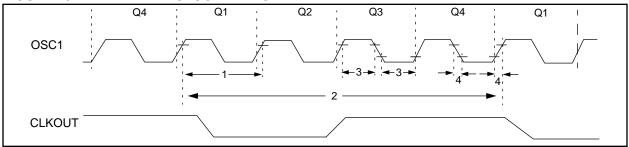


TABLE 19-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC		4	MHz	XT and RC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (PIC16C64A/CR64-04,
							PIC16LC64A/LCR64-04)
			DC	_	20	MHz	HS osc mode (PIC16C64A/ CR64-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC		4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	4	MHz	HS osc mode (PIC16C64A/ CR64-04, PIC16LC64A/LCR64-04)
			4	_	10	MHz	HS osc mode (PIC16C64A/ CR64-10)
			4	_	20	MHz	HS osc mode (PIC16C64A/ CR64-20)
			5	_	200	kHz	LP osc mode

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
1	Tosc	External CLKIN Period	250		_	ns	XT and RC osc mode
		(Note 1)	250	_	_	ns	HS osc mode (PIC16C64A/ CR64-04, PIC16LC64A/ LCR64-04)
			100	_	_	ns	HS osc mode (PIC16C64A/ CR64-10)
			50	_	_	ns	HS osc mode (PIC16C64A/ CR64-20)
			5	_	_	μs	LP osc mode
		Oscillator Period	250		_	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode (PIC16C64A/ CR64-04, PIC16LC64A/ LCR64-04)
			100	_	250	ns	HS osc mode (PIC16C64A/ CR64-10)
			50	_	250	ns	HS osc mode (PIC16C64A/ CR64-20)
			5	_	_	μs	LP osc mode
2	Tcy	Instruction Cycle Time (Note 1)	200		DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	100	_	_	ns	XT oscillator
	TosH	Low Time	2.5	_	_	μs	LP oscillator
			15	_	_	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or			25	ns	XT oscillator
	TosF	Fall Time	-	_	50	ns	LP oscillator
					15	ns	HS oscillator

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 19-3: CLKOUT AND I/O TIMING

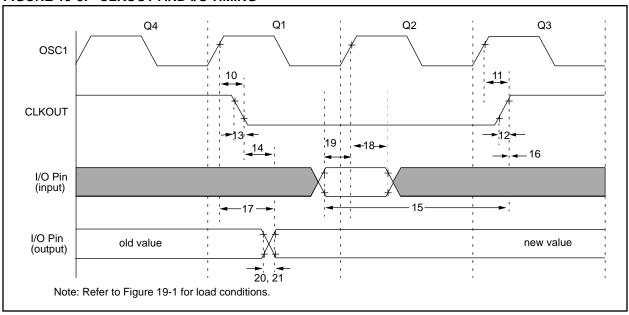


TABLE 19-3: CLKOUT AND I/O TIMING REQUIREMENTS

Parameters	Sym	Characteristic		Min	Typ†	Max	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		_	75	200	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑	_	75	200	ns	Note 1	
12*	TckR	CLKOUT rise time		_	35	100	ns	Note 1
13*	TckF	CLKOUT fall time		_	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out valid		_	_	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT ↑		Tosc + 200	_	_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT ↑		0	_	_	ns	Note 1
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out va	lid	_	50	150	ns	
18*	TosH2ioI	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time)	PIC16C62A/ R62/64A/R64	100	_	_	ns	
			PIC16LC62A/ R62/64A/R64	200	_		ns	
19*	TioV2osH	Port input valid to OSC1↑ (I/O in	setup time)	0	_	_	ns	
20*	TioR	Port output rise time	PIC16C62A/ R62/64A/R64	_	10	40	ns	
			PIC16LC62A/ R62/64A/R64	_	_	80	ns	
21*	TioF	Port output fall time	PIC16C62A/ R62/64A/R64	_	10	40	ns	
		PIC16LC62A/ R62/64A/R64		_	_	80	ns	
22††*	Tinp	RB0/INT pin high or low time	Tcy	_	_	ns		
23††*	Trbp	RB7:RB4 change int high or low	time	Tcy	_	_	ns	

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

^{††} These parameters are asynchronous events not related to any internal clock edge.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

FIGURE 19-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

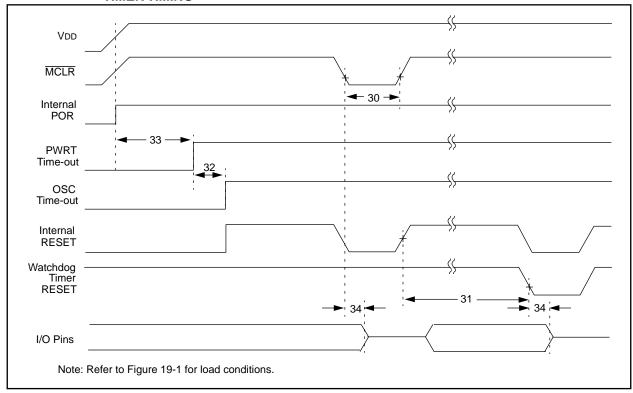


FIGURE 19-5: BROWN-OUT RESETTIMING

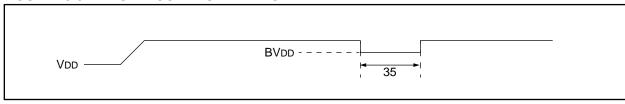


TABLE 19-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS

Parameter No.	Sym	Characteristic Min Typ† Max		Units	Conditions		
30	TmcL	MCLR Pulse Width (low)	2	_	_	μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	_	1024Tosc	_	_	Tosc = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tıoz	I/O Hi-impedance from MCLR Low or WDT Reset	_	_	2.1	μs	
35	TBOR	Brown-out Reset Pulse Width	100	_	_	μs	VDD ≤ BVDD (param. D005)

These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 19-6: TIMERO AND TIMER1 CLOCK TIMINGS

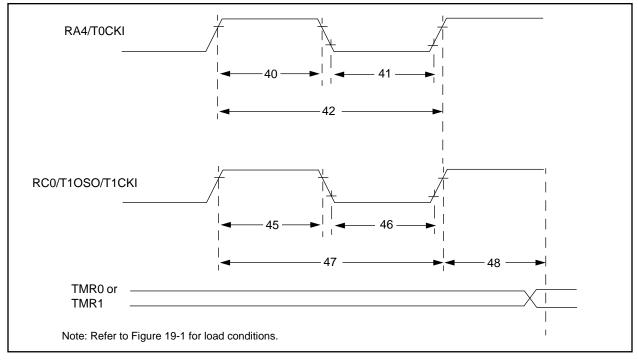


TABLE 19-5: TIMERO AND TIMER1 CLOCK REQUIREMENTS

Parameter No.	Sym	Characterist	ic		Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High F	Pulse Width	No Prescaler	0.5Tcy + 20	_	_	ns	
				With Prescaler	10	_	_	ns	
41*	Tt0L	T0CKI Low P	ulse Width	No Prescaler	0.5Tcy + 20	_	_	ns	
				With Prescaler	10	_	_	ns	
42*	Tt0P	T0CKI Period			Tcy + 40 N	_	_	ns	N = prescale value (1, 2, 4,, 256)
45*	Tt1H	T1CKI High	Synchronous, N	lo Prescaler	0.5Tcy + 20	_	_	ns	
		Time	Synchronous, With Prescaler	PIC16C62A/R62/ 64A/R64	15	_	_	ns	
				PIC16LC62A/R62/ 64A/R64	25	_	_	ns	
			Asynchronous		2Tcy	_	_	ns	
46*	Tt1L	T1CKI Low	Synchronous, N	lo Prescaler	0.5Tcy + 20	_	_	ns	
		Time	Synchronous, With Prescaler	PIC16C62A/R62/ 64A/R64	15	_	_	ns	
				PIC16LC62A/R62/ 64A/R64	25	_	_	ns	
			Asynchronous		2Tcy	_	_	ns	
47*	Tt1P	T1CKI input period	Synchronous		Tcy + 40 N	_	_	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		4Tcy	_	_	ns	
	Ft1		tor input frequency range bled by setting bit T1OSCEN)		DC	_	200	kHz	
48	TCKEZtmr1	Delay from ex	kternal clock edge	e to timer increment	2Tosc	_	7Tosc	_	

These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices | 61 | 62 | 62A | R62 | 63 | 64 | 64A | R64 | 65 | 65A

FIGURE 19-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1)

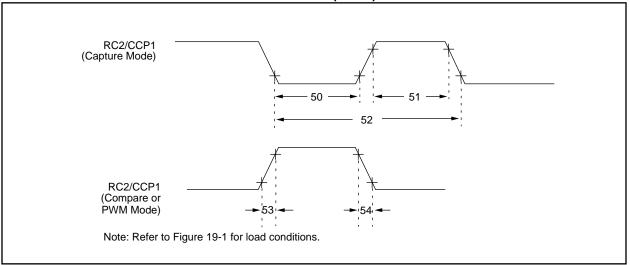


TABLE 19-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1)

Parameter No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1	No Prescaler		0.5Tcy + 20	_	_	ns	
		input low time	With Prescaler	PIC16C62A/R62/ 64A/R64	10	_	_	ns	
				PIC16LC62A/R62/ 64A/R64	20	_	_	ns	
51*	TccH	CCP1	No Prescaler		0.5Tcy + 20	_	_	ns	
		input high time	With Prescaler	PIC16C62A/R62/ 64A/R64	10	_	_	ns	
				PIC16LC62A/R62/ 64A/R64	20	_	_	ns	
52*	TccP	CCP1 input period			3Tcy + 40 N	_	_	ns	N = prescale value (1,4 or 16)
53*	TccR	CCP1 output rise t	ime	PIC16C62A/R62/ 64A/R64	_	10	25	ns	
				PIC16LC62A/R62/ 64A/R64	_	25	45	ns	
54*	TccF	CCP1 output fall ti	me	PIC16C62A/R62/ 64A/R64	_	10	25	ns	
				PIC16LC62A/R62/ 64A/R64	_	25	45	ns	

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 19-8: PARALLEL SLAVE PORTTIMING (PIC16C64A/R64)

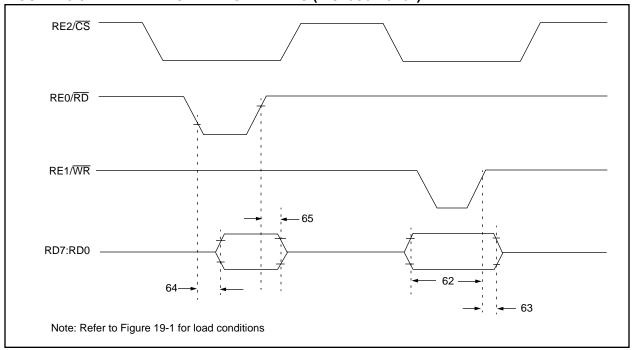


TABLE 19-7: PARALLEL SLAVE PORT REQUIREMENTS (PIC16C64A/R64)

Parameter No.	Sym	Characteristic		Min	Typ†	Max	Units	Conditions
62	TdtV2wrH	Data in valid before WR↑ or CS↑ (set	up time)	20	_	_	ns	
				25	_	_	ns	Automotive Range Only
63*	TwrH2dtl	WR↑ or CS↑ to data–in invalid (hold	PIC16C64A/R64	20	_	_	ns	
		time)	PIC16LC64A/R64	35	_	_	ns	
64	TrdL2dtV	RD↓ and CS↓ to data–out valid		_	_	80	ns	
				_	_	90	ns	Automotive Range Only
65*	TrdH2dtl	RD↑ or CS↑ to data–out invalid		10	1	30	ns	

Characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices | 61 | 62 | 62A | R62 | 63 | 64 | 64A | R64 | 65 | 65A

FIGURE 19-9: SPI MODE TIMING

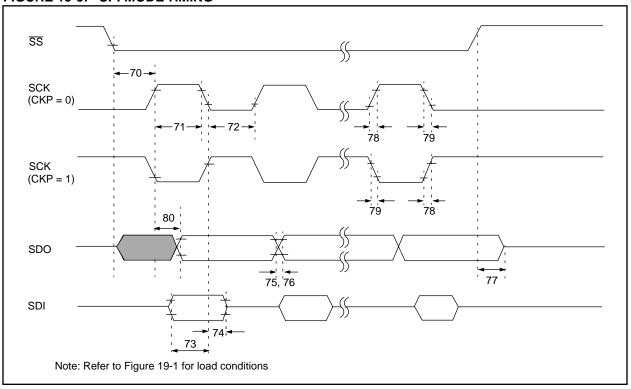


TABLE 19-8: SPI MODE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
70*	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input	Tcy	_	_	ns	
71*	TscH	SCK input high time (slave mode)	Tcy + 20	_	_	ns	
72*	TscL	SCK input low time (slave mode)	Tcy + 20	_	_	ns	
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	50	_	_	ns	
74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	50	_	_	ns	
75*	TdoR	SDO data output rise time		10	25	ns	
76*	TdoF	SDO data output fall time	_	10	25	ns	
77*	TssH2doZ	$\overline{\text{SS}} \downarrow$ to SDO output hi-impedance	10	_	50	ns	
78*	TscR	SCK output rise time (master mode)	-	10	25	ns	
79*	TscF	SCK output fall time (master mode)	_	10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_		50	ns	

Characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 19-10: I²C BUS START/STOP BITS TIMING

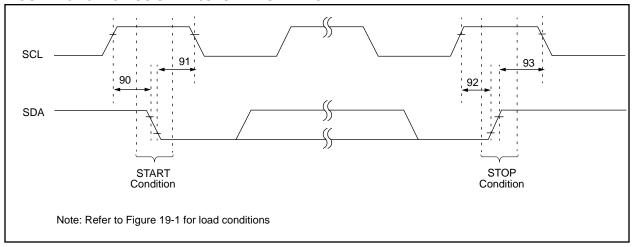


TABLE 19-9: I²C BUS START/STOP BITS REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур	Max	Units	Conditions	
90*	Tsu:sta	START condition	100 kHz mode	4700	_	_	ns	Only relevant for repeated START	
		Setup time	400 kHz mode	600	_	_	115	condition	
91*	THD:STA	START condition	100 kHz mode	4000	_	_		After this period the first clock	
		Hold time	400 kHz mode	600	_	_	115	pulse is generated	
92*	Tsu:sto	STOP condition	100 kHz mode	4700	_	_	ns		
		Setup time	400 kHz mode	600	_	_	115		
93*	THD:STO	STOP condition	100 kHz mode	4000	_	_	ns		
		Hold time	400 kHz mode	600	_	_	115		

^{*}Characterized but not tested.

FIGURE 19-11: I²C BUS DATA TIMING

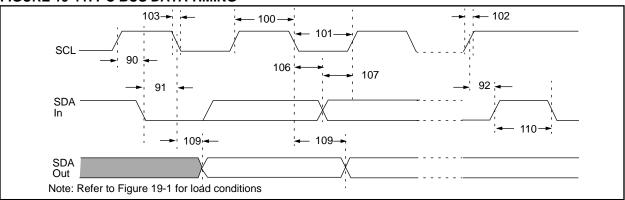


TABLE 19-10: I²C BUS DATA REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions
100*	THIGH	Clock high time	100 kHz mode	4.0	_	μs	PIC16C64A/R64 must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6		μs	PIC16C64A/R64 must operate at a minimum of 10 MHz
			SSP Module	1.5TcY	_		
101*	TLOW	Clock low time	100 kHz mode	4.7	_	μs	PIC16C64A/R64 must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	_	μs	PIC16C64A/R64 must operate at a minimum of 10 MHz
			SSP Module	1.5TcY	_		
102*	Tr	SDA and SCL rise	100 kHz mode	_	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
103*	TF	SDA and SCL fall time	100 kHz mode	_	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
90*	Tsu:sta	START condition	100 kHz mode	4.7	_	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	_	μs	START condition
91*	THD:STA	START condition hold	100 kHz mode	4.0	_	μs	After this period the first clock
		time	400 kHz mode	0.6	_	μs	pulse is generated
106*	THD:DAT	Data input hold time	100 kHz mode	0	1	ns	
			400 kHz mode	0	0.9	μs	
107*	TSU:DAT	Data input setup time	100 kHz mode	250	_	ns	Note 2
			400 kHz mode	100	_	ns	
92*	Tsu:sto	STOP condition setup	100 kHz mode	4.7	_	μs	
		time	400 kHz mode	0.6	_	μs	
109*	TAA	Output valid from	100 kHz mode	_	3500	ns	Note 1
		clock	400 kHz mode		_	ns	
110*	TBUF	Bus free time	100 kHz mode	4.7		μs	Time the bus must be free
			400 kHz mode	1.3	_	μs	before a new transmission can start
	Cb	Bus capacitive loading			400	pF	

Characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

^{2:} A fast-mode l²C-bus device can be used in a standard-mode l²C-bus system, but the requirement tsu;DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode l²C bus specification) before the SCL line is released.

PIC16C6X

NOTES:

20.0 ELECTRICAL CHARACTERISTICS FOR PIC16C65

Absolute Maximum Ratings †

Ambient temperature under bias	55 to +125°C
Storage temperature	-65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, IIK (VI < 0 or VI > VDD)	±20 mA
Output clamp current, IOK (VO < 0 or VO > VDD)	±20 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (combined)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (combined)	200 mA
Maximum current sunk by PORTC and PORTD (combined)	200 mA
Maximum current sourced by PORTC and PORTD (combined)	200 mA

Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - Σ IOH} + Σ {(VDD-VOH) x IOH} + Σ (VOI x IOL)

Note 2: Voltage spikes below Vss at the \overline{MCLR} pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the \overline{MCLR} pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 20-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C65-04	PIC16C65-10	PIC16C65-20	PIC16LC65-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 3.8 mA max. at 3V IPD: 800 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.
XT	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 3.8 mA max. at 3V IPD: 800 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 15 mA max. at 5.5V IPD 1.0 μA typ. at 4.5V Freq: 10 MHz max.	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.	Do not use in HS mode	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	Do not use in LP mode	Do not use in LP mode	VDD: 3.0V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 13.5 μA max. at 3.0V Freq: 200 kHz max.	VDD: 3.0V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 13.5 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

PIC16C6X

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

20.1 DC Characteristics: PIC16C65-04 (Commercial, Industrial)

PIC16C65-10 (Commercial, Industrial) PIC16C65-20 (Commercial, Industrial)

	Standard Operating Conditions (unless otherwise stated)								
DC CHA	RACTERISTICS	Operating temperature -40°C ≤ TA ≤ +85°C for industrial and							
20 0117					0°0	2 ≤	≤ TA ≤ +70°C for commercial		
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions		
D001	Supply Voltage	VDD	4.0	-	6.0	V	XT, RC and LP osc configuration		
D001A			4.5	-	5.5	V	HS osc configuration		
D002*	RAM Data Retention Voltage (Note 1)	VDR	-	1.5	-	V	Device in SLEEP mode		
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details		
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details		
D010	Supply Current (Note 2, 5)	IDD	-	2.7	5	mA	XT, RC osc configuration (PIC16C65-04) FOSC = 4 MHz, VDD = 5.5V (Note 4)		
D013			-	13.5	30	mA	HS osc configuration (PIC16C65-20) Fosc = 20 MHz, VDD = 5.5V		
D020	Power-down Current	IPD	-	10.5	800	μΑ	VDD = 4.0V, WDT enabled,-40°C to +85°C		
D021	(Note 3, 5)		-	1.5	800	μΑ	$VDD = 4.0V$, WDT disabled, $-0^{\circ}C$ to $+70^{\circ}C$		
D021A			-	1.5	800	uΑ	VDD = 4.0V, WDT disabled,-40°C to +85°C		

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,
 - MCLR = VDD; WDT enabled/disabled as specified.
 - 3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
 - 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
 - 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.

20.2 DC Characteristics: PIC16LC65-04 (Commercial, Industrial)

	Standard Operating Conditions (unless otherwise stated)								
DC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for industrial and									
0° C $\leq TA \leq +70^{\circ}$ C for commercial									
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions		
D001	Supply Voltage	Vdd	3.0	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)		
D002*	RAM Data Retention Voltage (Note 1)	VDR	-	1.5	-	V	Device in SLEEP mode		
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details		
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details		
D010	Supply Current (Note 2, 5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration FOSC = 4 MHz, VDD = 3.0V (Note 4)		
D010A			-	22.5	105	μΑ	LP osc configuration Fosc = 32 kHz, VDD = 4.0V, WDT disabled		
D020	Power-down Current	IPD	-	7.5	800	μΑ	VDD = 3.0V, WDT enabled, -40°C to +85°C		
D021	(Note 3, 5)		-	0.9	800	μΑ	VDD = 3.0V, WDT disabled, 0°C to +70°C		
D021A			-	0.9	800	μΑ	VDD = 3.0V, WDT disabled, -40°C to +85°C		

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,
 - MCLR = VDD; WDT enabled/disabled as specified.
 - 3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
 - 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
 - 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.

DC CHARACTERISTICS

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

20.3 **DC Characteristics:** PIC16C65-04 (Commercial, Industrial)

> PIC16C65-10 (Commercial, Industrial) PIC16C65-20 (Commercial, Industrial)

> PIC16LC65-04 (Commercial, Industrial)

Standard Operating Conditions (unless otherwise stated)

 \leq TA \leq +85°C for industrial and Operating temperature -40°C 0°C ≤ TA ≤ +70°C for commercial

Operating voltage VDD range as described in DC spec Section 20.1 and

	Section 20.2									
Param No.	Characteristic	Sym	Min	Typ †	Max	Units	Conditions			
	Input Low Voltage			•						
	I/O ports	VIL								
D030	with TTL buffer	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Vss	_	0.5V	V				
D031	with Schmitt Trigger buffer		Vss	_	0.2VDD	V				
D032	MCLR, RA4/T0CKI,OSC1		Vss	_	0.2VDD	V				
	(in RC mode)									
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3VDD	V	Note1			
	Input High Voltage									
	I/O ports	VIH		-						
D040	with TTL buffer		2.0	-	Vdd	V	$4.5V \le VDD \le 5.5V$			
D040A			0.8VDD	-	Vdd		For VDD > 5.5V or VDD < 4.5V			
D041	with Schmitt Trigger buffer		0.8VDD	-	Vdd		For entire VDD range			
D042	MCLR, RA4/T0CKI, RC7:RC4,		0.8VDD	-	Vdd	V				
	RD7:RD4, RB0/INT, RE2:RE0									
D042A	OSC1 (XT, HS and LP)		0.7 VDD		Vdd	V	Note1			
D043	OSC1 (in RC mode)		0.9VDD	-	Vdd	V				
D070	PORTB weak pull-up current	IPURB	50	250	400	μΑ	VDD = 5V, VPIN = VSS			
	Input Leakage Current									
	(Notes 2, 3)									
D060	I/O ports	lıL	-	-	±1	μΑ	Vss ≤ VPIN ≤ VDD, Pin at himpedance			
D061	MCLR, RA4/T0CKI		-	-	±5	μΑ	Vss ≤ VPIN ≤ VDD			
D063	OSC1		-	-	±5	μΑ	$Vss \le VPIN \le VDD$, XT, HS, and LP			
							osc configuration			
	Output Low Voltage									
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA , VDD = 4.5V , -40°C to $+85^{\circ}\text{C}$			
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA , VDD = 4.5V , -40°C to $+85^{\circ}\text{C}$			
	Output High Voltage									
D090	I/O ports (Note 3)	Vон	VDD-0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C			
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°C to +85°C			
	1		1							

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

^{2:} The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input

^{3:} Negative current is defined as coming out of the pin.

DC CHA	Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for industrial and 0°C ≤ TA ≤ +70°C for commercial Operating voltage VDD range as described in DC spec Section 20.1 and Section 20.2						
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions
No.				†			
	Capacitive Loading Specs on Output Pins						
D100	OSC2 pin	Cosc ₂	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.
D101	All I/O pins and OSC2 (in RC mode)	Сю	-	-	50	pF	
D102	SCL, SDA in I ² C mode	Cb	-	-	400	pF	

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.
 - 2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 - 3: Negative current is defined as coming out of the pin.

PIC16C6X

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

20.4 **Timing Parameter Symbology**

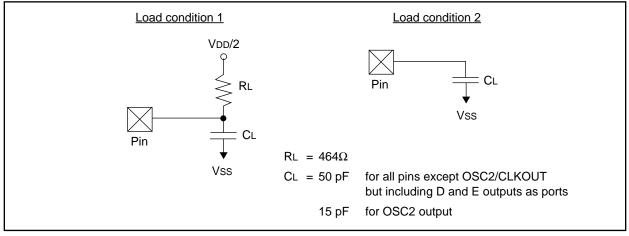
The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS	3. Tcc:st	(I ² C specifications only)
2. TppS	4. Ts	(I ² C specifications only)
Т		
- Fraguency	-	Timo

1			
F	Frequency	Т	Time

Lowercase letters (pp) and their meanings:

рр			
СС	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	t0	T0CKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR


Uppercase letters and their meanings:

S				
F	Fall	P	Period	
Н	High	R	Rise	
1	Invalid (Hi-impedance)	V	Valid	
L	Low	Z	Hi-impedance	
I ² C only				
AA	output access	High	High	
BUF	Bus free	Low	Low	

Tcc:st (I²C specifications only)

CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

FIGURE 20-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

20.5 <u>Timing Diagrams and Specifications</u>

FIGURE 20-2: EXTERNAL CLOCK TIMING

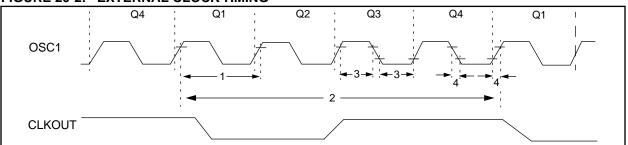


TABLE 20-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC		4	MHz	XT and RC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (PIC16C65-04,
							PIC16LC65-04)
			DC	_	20	MHz	HS osc mode (PIC16C65-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC		4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	4	MHz	HS osc mode (PIC16C65-04, PIC16LC65-04)
			4	_	10	MHz	HS osc mode (PIC16C65-10)
			4	_	20	MHz	HS osc mode (PIC16C65-20)
			5	_	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250		_	ns	XT and RC osc mode
		(Note 1)	250	_	_	ns	HS osc mode (PIC16C65-04, PIC16LC65-04)
			100	_	_	ns	HS osc mode (PIC16C65-10)
			50	_	_	ns	HS osc mode (PIC16C65-20)
			5	_	_	μs	LP osc mode
		Oscillator Period	250		_	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode (PIC16C65-04, PIC16LC65-04)
			100	_	250	ns	HS osc mode (PIC16C65-10)
			50	_	250	ns	HS osc mode (PIC16C65-20)
			5	_	_	μs	LP osc mode
2	Tcy	Instruction Cycle Time (Note 1)	200		DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	50		_	ns	XT oscillator
	TosH	Low Time	2.5	_	-	μs	LP oscillator
			15	_	-	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	_	_	25	ns	XT oscillator
	TosF	Fall Time	_	_	50	ns	LP oscillator
			_	_	15	ns	HS oscillator

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 20-3: CLKOUT AND I/O TIMING

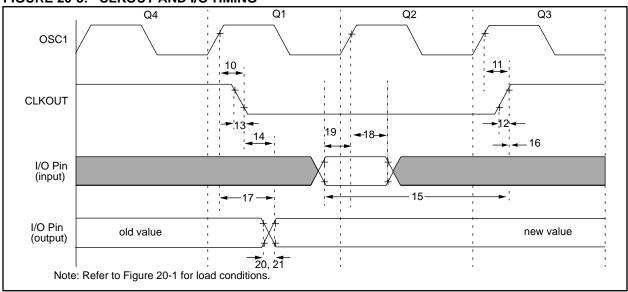


TABLE 20-3: CLKOUT AND I/O TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		_	75	200	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑		_	75	200	ns	Note 1
12*	TckR	CLKOUT rise time		_	35	100	ns	Note 1
13*	TckF	CLKOUT fall time		_	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out valid		_	_	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT 1	0.25Tcy + 25	_	_	ns	Note 1	
16*	TckH2ioI	Port in hold after CLKOUT ↑	0			ns	Note 1	
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out	_	50	150	ns		
18*	TosH2ioI	OSC1↑ (Q2 cycle) to Port	PIC16C65	100	_	_	ns	
		input invalid (I/O in hold time)	PIC16LC65	200	_	_	ns	
19*	TioV2osH	Port input valid to OSC1 [↑] (I/O	in setup time)	0	_	_	ns	
20*	TioR	Port output rise time	Port output rise time PIC16C65		10	25	ns	
			PIC16LC65	_	_	60	ns	
21*	TioF	Port output fall time	PIC16C65	_	10	25	ns	
			PIC16LC65	_	_	60	ns	
22††*	Tinp	RB0/INT pin high or low time	Tcy	_	_	ns		
23††*	Trbp	RB7:RB4 change int high or lo	w time	Tcy	_		ns	

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

^{††} These parameters are asynchronous events not related to any internal clock edge.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

FIGURE 20-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

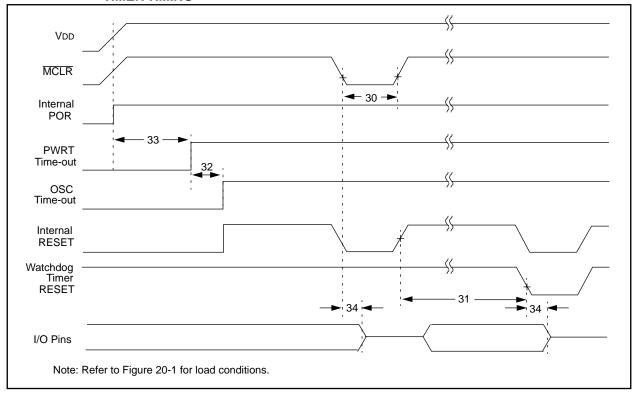


TABLE 20-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30*	TmcL	MCLR Pulse Width (low)	100	_	_	ns	VDD = 5V, -40°C to +85°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	$VDD = 5V, -40^{\circ}C \text{ to } +85^{\circ}C$
32	Tost	Oscillation Start-up Timer Period	_	1024Tosc	_	_	TOSC = OSC1 period
33*	Tpwrt	Power-up Timer Period or WDT reset	28	72	132	ms	$VDD = 5V, -40^{\circ}C \text{ to } +85^{\circ}C$
34	Tıoz	I/O Hi-impedance from MCLR Low		_	100	ns	

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 20-5: TIMERO AND TIMER1 CLOCK TIMINGS

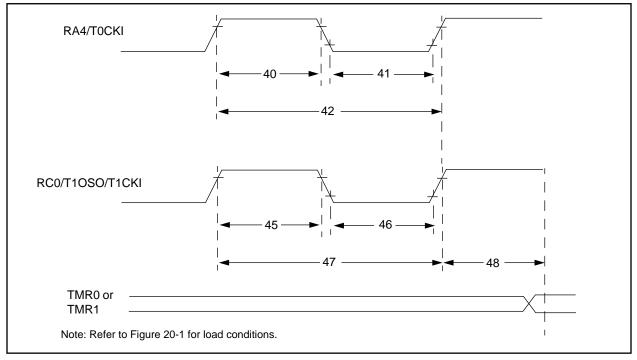


TABLE 20-5: TIMERO AND TIMER1 CLOCK REQUIREMENTS

Param No.	Sym	Characteristic	;		Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pu	T0CKI High Pulse Width No Prescaler		0.5Tcy + 20	-	_	ns	
				With Prescaler	10	_	_	ns	
41*	Tt0L	T0CKI Low Pu	lse Width	No Prescaler	0.5Tcy + 20	_	_	ns	
				With Prescaler	10	_	_	ns	
42*	Tt0P	T0CKI Period			Greater of: 20 μs or <u>Tcy + 40</u> N	_	_	ns	N = prescale value (1, 2, 4,, 256)
45*	Tt1H	T1CKI High	Synchronous, I	No Prescaler	0.5Tcy + 20	_	_	ns	
		Time	Synchronous,		15	_	_	ns	
			With Prescaler	PIC16LC65	25	_	_	ns	
			Asynchronous		2 Tcy	_	_	ns	
46*	Tt1L	T1CKI Low	Synchronous, I	No Prescaler	0.5Tcy + 20	_	_	ns	
		Time	Synchronous,		15	_	_	ns	
			With Prescaler	PIC16LC65	25	_	_	ns	
			Asynchronous		2TcY	_	_	ns	
47*	Tt1P	T1CKI input period	Synchronous		Greater of: 20 μs or <u>Tcy + 40</u> N	_	_	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		Greater of:	_	_	ns	
					20 μs or 4TcY				
	Ft1		ner1 oscillator input frequency range scillator enabled by setting bit T1OSCEN)		DC	_	200	kHz	
48	TCKEZtmr1	Delay from ext	ernal clock edge	to timer increment	2Tosc	_	7Tosc	_	

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 20-6: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

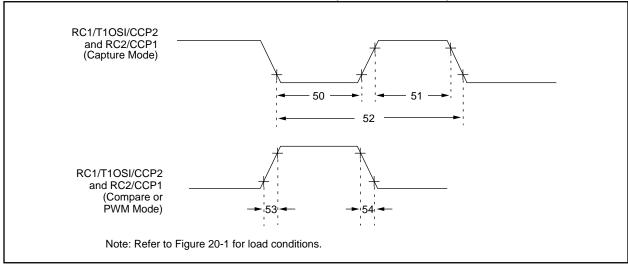


TABLE 20-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Parameter No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	_	_	ns	
		input low time	With Prescaler	PIC16C65	10	_	_	ns	
				PIC16LC65	20	_	_	ns	
51*	TccH	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	_	_	ns	
		input high time	With Prescaler	PIC16C65	10	_	_	ns	
				PIC16LC65	20	_	_	ns	
52*	TccP	CCP1 and CCP2 in	nput period	3Tcy + 40 N	_	_	ns	N = prescale value (1,4, or 16)	
53	TccR	CCP1 and CCP2 output rise time		PIC16C65	_	10	25	ns	
				PIC16LC65	_	25	45	ns	
54	TccF	F CCP1 and CCP2 output fall time PIC16C65		PIC16C65	_	10	25	ns	
				PIC16LC65	_	25	45	ns	

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 20-7: PARALLEL SLAVE PORT TIMING

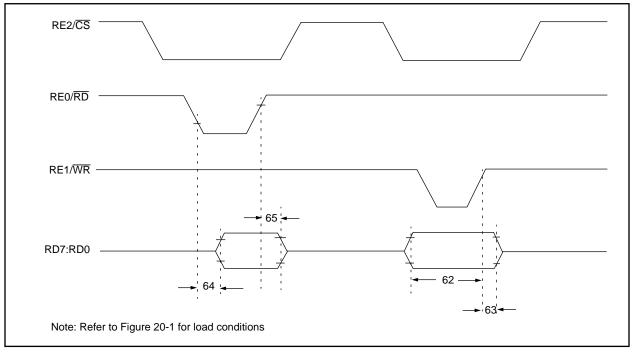


TABLE 20-7: PARALLEL SLAVE PORT REQUIREMENTS

Parameter No.	Sym	Characteristic			Тур†	Max	Units	Conditions
62	TdtV2wrH	Data in valid before WR↑ or CS↑ (setup time)			_	_	ns	
63*	TwrH2dtl	WR↑ or CS↑ to data-in invalid (hold PIC16C		20	_	_	ns	
		time)	PIC16LC65	35	_	_	ns	
64	TrdL2dtV	RD↓ and CS↓ to data–out valid		_	_	80	ns	
65	TrdH2dtl	RD↑ or CS↑ to data–out invalid		10	_	30	ns	

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices | 61 | 62 | 62A | R62 | 63 | 64 | 64A | R64 | 65 | 65A

FIGURE 20-8: SPI MODE TIMING

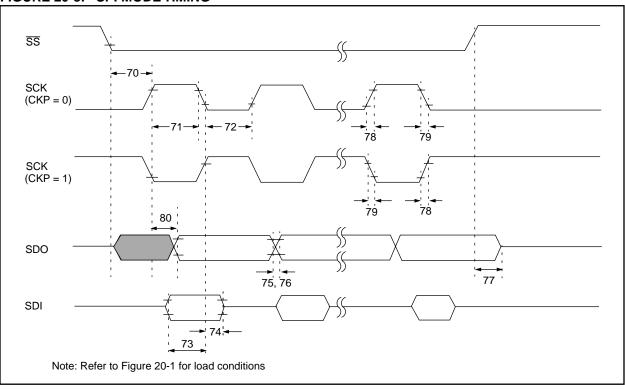


TABLE 20-8: SPI MODE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input	Tcy	_	_	ns	
71	TscH	SCK input high time (slave mode)	Tcy + 20	_	_	ns	
72	TscL	SCK input low time (slave mode)	Tcy + 20	_		ns	
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	50	_	_	ns	
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	50	_	_	ns	
75	TdoR	SDO data output rise time	_	10	25	ns	
76	TdoF	SDO data output fall time		10	25	ns	
77	TssH2doZ	SS↓ to SDO output hi-impedance	10	_	50	ns	
78	TscR	SCK output rise time (master mode)	_	10	25	ns	
79	TscF	SCK output fall time (master mode)		10	25	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_	_	50	ns	

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices | 61 | 62 | 62A | R62 | 63 | 64 | 64A | R64 | 65 | 65A |

FIGURE 20-9: I²C BUS START/STOP BITS TIMING

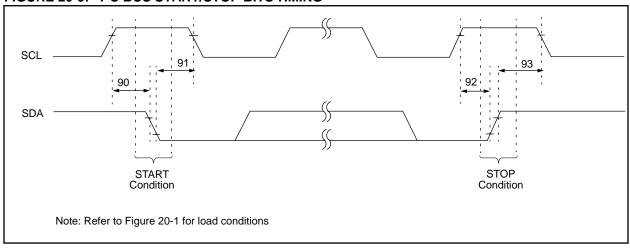
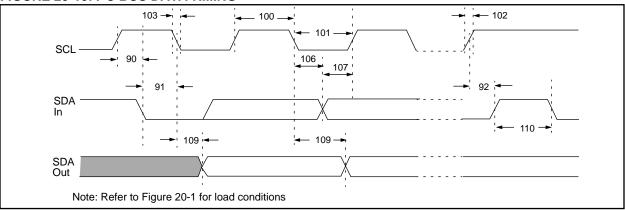
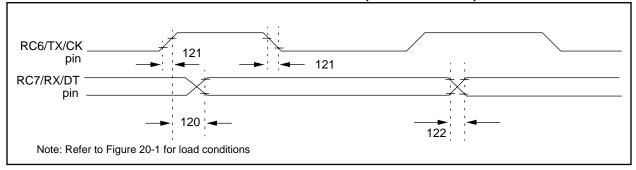


TABLE 20-9: I²C BUS START/STOP BITS REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур	Max	Units	Conditions	
90	TSU:STA	START condition	100 kHz mode	4700	_	_	ns	Only relevant for repeated START	
		Setup time	400 kHz mode	600	_	_	113	condition	
91	THD:STA	START condition	100 kHz mode	4000	_	_		After this period the first clock	
		Hold time	400 kHz mode	600	_	_	115	pulse is generated	
92	Tsu:sto	STOP condition	100 kHz mode	4700	_	_	ns		
		Setup time	400 kHz mode	600	_	_	115		
93	THD:STO	STOP condition	100 kHz mode	4000	_	_	ne		
		Hold time	400 kHz mode	600	_	_	ns		

FIGURE 20-10: I²C BUS DATA TIMING




TABLE 20-10: I²C BUS DATA REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions
100	THIGH	Clock high time	100 kHz mode	4.0	_	μs	PIC16C65 must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	_	μs	PIC16C65 must operate at a minimum of 10 MHz
			SSP Module	1.5TcY	_		
101	TLOW	Clock low time	100 kHz mode	4.7	_	μs	PIC16C65 must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	_	μs	PIC16C65 must operate at a minimum of 10 MHz
			SSP Module	1.5TcY	_		
102	Tr	SDA and SCL rise	100 kHz mode	_	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
103	TF	SDA and SCL fall time	100 kHz mode	_	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
90	Tsu:sta	START condition	100 kHz mode	4.7	_	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	_	μs	START condition
91	THD:STA	START condition hold	100 kHz mode	4.0	_	μs	After this period the first clock
		time	400 kHz mode	0.6	_	μs	pulse is generated
106	THD:DAT	Data input hold time	100 kHz mode	0	_	ns	
			400 kHz mode	0	0.9	μs	
107	Tsu:dat	Data input setup time	100 kHz mode	250	_	ns	Note 2
			400 kHz mode	100	_	ns	
92	Tsu:sto	STOP condition setup	100 kHz mode	4.7	_	μs	
		time	400 kHz mode	0.6	_	μs	
109	TAA	Output valid from	100 kHz mode	_	3500	ns	Note 1
		clock	400 kHz mode	_	_	ns	
110	TBUF	Bus free time	100 kHz mode	4.7	_	μs	Time the bus must be free
_			400 kHz mode	1.3	_	μs	before a new transmission can start
	Cb	Bus capacitive loading		_	400	pF	

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

^{2:} A fast-mode I²C-bus device can be used in a standard-mode I²C-bus system, but the requirement tsu;DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

FIGURE 20-11: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

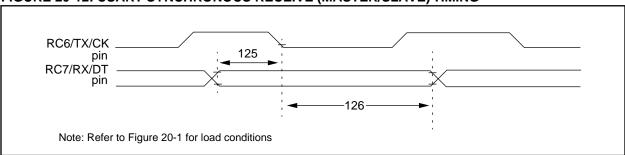


TABLE 20-11: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
120	tckH2dtV		PIC16C65	_	_	80	ns	
		Clock high to data out valid	PIC16LC65	_	_	100	ns	
121	tckrf	Clock out rise time and fall time	PIC16C65	_	_	45	ns	
		(Master Mode)	PIC16LC65	_	_	50	ns	
122	tdtrf	Data out rise time and fall time	PIC16C65	_	_	45	ns	
			PIC16LC65	_	_	50	ns	

^{†:} Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 20-12: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 20-12: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
125	tdtV2ckl	SYNC RCV (MASTER & SLAVE) Data hold before CK ↓ (DT hold time)	15	_		ns	
126	tckL2dtl	Data hold after CK ↓ (DT hold time)	15	_	_	ns	

^{†:} Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

21.0 ELECTRICAL CHARACTERISTICS FOR PIC16C63/65A

Absolute Maximum Ratings (†)

Ambient temperature under bias	55 to + 125°C
Storage temperature	65°C to + 150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Total power dissipation (Note 1)	
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, IIK (VI < 0 or VI > VDD)	<u>±2</u> 0 mA
Output clamp current, lok (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (Note 3) (combined)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (Note 3) (combined)	200 mA
Maximum current sunk by PORTC and PORTD (Note 3) (combined)	200 mA
Maximum current sourced by PORTC and PORTD (Note 3) (combined)	200 mA

- **Note 1:** Power dissipation is calculated as follows: Pdis = VDD x {IDD Σ IOH} + Σ {(VDD-VOH) x IOH} + Σ (VOI x IOL)
- **Note 2:** Voltage spikes below Vss at the \overline{MCLR}/VPP pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the \overline{MCLR}/VPP pin rather than pulling this pin directly to Vss.
- Note 3: PORTD and PORTE not available on the PIC16C63.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 21-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C63-04 PIC16C65A-04	PIC16C63-10 PIC16C65A-10	PIC16C63-20 PIC16C65A-20	PIC16LC63-04 PIC16LC65A-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 µA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 3.8 mA max. at 3V IPD: 5 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.
XT	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 µA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 3.8 mA max. at 3V IPD: 5 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.5 μA typ. at 4.5V	VDD: 4.5V to 5.5V IDD: 10 mA max. at 5.5V IPD 1.5 μA typ. at 4.5V	VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V	Do not use in HS mode	VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V
	Freq: 4 MHz max.	Freq: 10 MHz max.	Freq: 20 MHz max.		Freq: 20 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	Do not use in LP mode	Do not use in LP mode	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 13.5 μA max. at 3.0V Freq: 200 kHz max.	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 13.5 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

21.1 DC Characteristics: PIC16C63-04,PIC16C65A-04 (Commercial,Industrial,Automotive)

PIC16C63-10,PIC16C65A-10 (Commercial,Industrial,Automotive) PIC16C63-20,PIC16C65A-20 (Commercial,Industrial,Automotive)

Standard Operating Conditions (unless otherwise stated)

DC CHARACTERISTICS

Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for automotive, $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for industrial and $0^{\circ}\text{C} \le \text{TA} \le +70^{\circ}\text{C}$ for commercial

	0°C ≤ TA ≤ +70°C for commercial						
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001 D001A	Supply Voltage	VDD	4.0 4.5	-	6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002*	RAM Data Retention Voltage (Note 1)	VDR	-	1.5	-	V	Device in SLEEP mode
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss		V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-		V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled
			3.7	4.0	4.4	V	Automotive Range Only
D010	Supply Current (Note 2, 5)	IDD	-	2.7	5	mA	XT, RC, osc configuration (PIC16C63/65A-04) FOSC = 4 MHz, VDD = 5.5V (Note 4)
D013			-	10	20	mA	HS osc configuration (PIC16C63/65A-20) FOSC = 20 MHz, VDD = 5.5V
D015*	Brown-out Reset Current (Note 6)	Δlbor	-	350	425	μΑ	BOR enabled, VDD = 5.0V
D020	Power-down Current	IPD	-	10.5	42	μΑ	VDD = 4.0V, WDT enabled,-40°C to +85°C
D021	(Note 3, 5)		-	1.5	16	μΑ	VDD = 4.0V, WDT disabled, -0° C to $+70^{\circ}$ C
D021A D021B			-	1.5 2.5	19 19	μΑ	VDD = 4.0V, WDT disabled, 40°C to +85°C
DUZIB			-	2.5	19	μΑ	VDD = 4.0V, WDT disabled,-40°C to +125°C
D023*	Brown-out Reset Current (Note 6)	Δlbor	1	350	425	μΑ	BOR enabled, VDD = 5.0V

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

- 3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

21.2 DC Characteristics: PIC16LC63-04,PIC16LC65A-04 (Commercial,Industrial)

	Standard Operating Conditions (unless otherwise stated)								
DC CHA		Operating temperature -40° C \leq TA \leq +85 $^{\circ}$ C for industrial and							
			TA ≤ +70°C for commercial						
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions		
D001	Supply Voltage	Vdd	2.5	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)		
D002*	RAM Data Retention Voltage (Note 1)	VDR	-	1.5	-	V	Device in SLEEP mode		
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details		
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details		
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled		
D010	Supply Current (Note 2, 5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration FOSC = 4 MHz, VDD = 3.0V (Note 4)		
D010A			-	22.5	48	μΑ	LP osc configuration FOSC = 32 kHz, VDD = 3.0V, WDT disabled		
D015*	Brown-out Reset Current (Note 6)	Δ lbor	-	350	425	μΑ	BOR enabled, VDD = 5.0V		
D020	Power-down Current	IPD	-	7.5	30	μΑ	VDD = 3.0V, WDT enabled, -40°C to +85°C		
D021	(Note 3, 5)		-	0.9	5	μΑ	VDD = 3.0V, WDT disabled, 0°C to +70°C		
D021A			-	0.9	5	μΑ	VDD = 3.0V, WDT disabled, -40°C to +85°C		
D023*	Brown-out Reset Current (Note 6)	Δ lbor	-	350	425	μА	BOR enabled, VDD = 5.0V		

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD.
 - MCLR = VDD; WDT enabled/disabled as specified.
 - 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
 - 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
 - 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
 - 6: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

DC CHARACTERISTICS

Applicable Devices | 61 | 62 | 62A | R62 | 63 | 64 | 64A | R64 | 65 | 65A

21.3 DC Characteristics:

PIC16C63-04,PIC16C65A-04 (Commercial,Industrial,Automotive) PIC16C63-10,PIC16C65A-10 (Commercial,Industrial,Automotive) PIC16C63-20,PIC16C65A-20 (Commercial,Industrial,Automotive) PIC16LC63-04,PIC16LC65A-04 (Commercial,Industrial)

Standard Operating Conditions (unless otherwise stated)

Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for automotive,

 -40° C \leq TA \leq +85 $^{\circ}$ C for industrial and 0° C \leq TA \leq +70 $^{\circ}$ C for commercial

Operating voltage VDD range as described in DC spec Section 21.1

and Section 21.2

	and Section 21.2						
Param No.	Characteristic	Sym	Min	Typ †	Max	Units	Conditions
	Input Low Voltage						
	I/O ports	VIL					
D030	with TTL buffer		Vss	-	0.5V	V	
D031	with Schmitt Trigger buffer		Vss	-	0.2Vdd	V	
D032	MCLR, RA4/T0CKI, OSC1		Vss	-	0.2Vdd	V	
	(in RC mode)						
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3VDD	V	Note1
	Input High Voltage						
	I/O ports	VIH		-			
D040	with TTL buffer		2.0	-	Vdd	V	4.5V ≤ VDD ≤ 5.5V
D040A			0.8VDD	-	Vdd	V	For VDD > 5.5V or VDD < 4.5V
D041	with Schmitt Trigger buffer		0.8VDD	-	Vdd	V	For entire VDD range
D042	MCLR RA4/T0CKI, RC7:RC4,		0.8VDD	-	Vdd	V	
	RD7:RD4, RB0/INT, RE2:RE0						
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1
D043	OSC1 (in RC mode)		0.9VDD	-	Vdd	V	
D070	PORTB weak pull-up current	IPURB	50	250	400	μΑ	VDD = 5V, VPIN = VSS
	Input Leakage Current (Notes 2, 3)						
D060	I/O ports	lı∟	-	-	±1	μΑ	Vss ≤ VPIN ≤ VDD, Pin at hi- impedance
D061	MCLR, RA4/T0CKI		-	-	±5	μΑ	Vss ≤ VPIN ≤ VDD
D063	OSC1		-	-	±5	μΑ	Vss ≤ VPIN ≤ VDD, XT, HS and LP osc configuration
	Output Low Voltage						
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C
D080A			-	-	0.6	V	IOL = 7.0 mA , VDD = 4.5V , -40°C to $+125^{\circ}\text{C}$
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, $VDD = 4.5V$, $-40^{\circ}C$ to $+85^{\circ}C$
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

^{2:} The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

^{3:} Negative current is defined as coming out of the pin.

Standard Operating Conditions (unless otherwise stated)

Operating temperature

-40°C \leq TA \leq +125°C for automotive,

-40°C

-40°C \leq TA \leq +85°C for industrial and 0°C \leq TA \leq +70°C for commercial

Operating voltage VDD range as described in DC spec Section 21.1

and Section 21.2

Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions
No.	Ondi deteriorie	Oy		+	Max	Oilles	Conditions
110.	Output High Voltage						
D090	I/O ports (Note 3)	Vон	VDD-0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C
D090A			VDD-0.7	-	-	V	$IOH = -2.5 \text{ mA}, VDD = 4.5V, $ $-40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}$
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, $-40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}$
D092A			VDD-0.7	-	-	V	$IOH = -1.0 \text{ mA}, VDD = 4.5V, $ $-40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}$
	Capacitive Loading Specs on Out-						
	put Pins						
D100	OSC2 pin	Cosc ₂	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.
D101	All I/O pins and OSC2 (in RC mode)	Cio	-	-	50	pF	
D102	SCL, SDA in I ² C mode	Cb	-	-	400	pF	

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.
 - The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 - 3: Negative current is defined as coming out of the pin.

DC CHARACTERISTICS

PIC16C6X

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

21.4 <u>Timing Parameter Symbology</u>

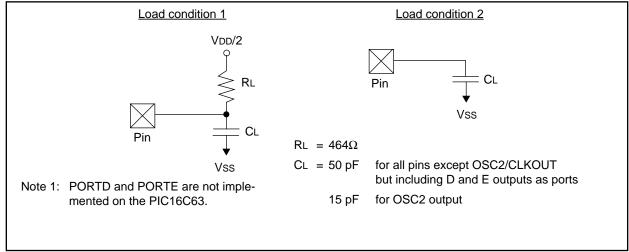
The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS	3. Tcc:st	(I ² C specifications only)
2. TppS	4. Ts	(I ² C specifications only)

Т				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
F	Frequency	Т	Time	
			•	

Lowercase letters (pp) and their meanings:

рр			
СС	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	t0	T0CKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR


Uppercase letters and their meanings:

S	-			
F	Fall	P	Period	
Н	High	R	Rise	
I	Invalid (Hi-impedance)	V	Valid	
L	Low	Z	Hi-impedance	
I ² C only				
AA	output access	High	High	
BUF	Bus free	Low	Low	

Tcc:st (I²C specifications only)

CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

FIGURE 21-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

21.5 <u>Timing Diagrams and Specifications</u>

FIGURE 21-2: EXTERNAL CLOCK TIMING

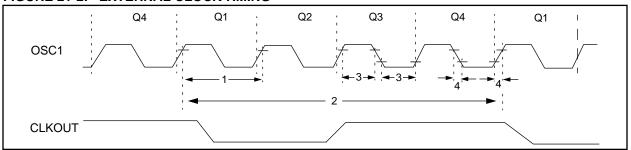


TABLE 21-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC		4	MHz	XT and RC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (PIC16C63/65A-04)
			DC	_	20	MHz	HS osc mode (PIC16C63/65A-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	4	MHz	HS osc mode (PIC16C63/65A-04)
			4	_	10	MHz	HS osc mode (PIC16C63/65A-10)
			4	_	20	MHz	HS osc mode (PIC16C63/65A-20)
			5		200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	_	_	ns	XT and RC osc mode
		(Note 1)	250	_	_	ns	HS osc mode (PIC16C63/65A-04)
			100	_	_	ns	HS osc mode (PIC16C63/65A-10)
			50	_	_	ns	HS osc mode (PIC16C63/65A-20)
			5	_	_	μs	LP osc mode
		Oscillator Period	250	_	_	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode (PIC16C63/65A-04)
			100	_	250	ns	HS osc mode (PIC16C63/65A-10)
			50	_	250	ns	HS osc mode (PIC16C63/65A-20)
			5	_	_	μs	LP osc mode
2	TCY	Instruction Cycle Time (Note 1)	200		DC	ns	Tcy = 4/Fosc
3*	TosL,	External Clock in (OSC1) High or	100	_	_	ns	XT oscillator
	TosH	Low Time	2.5	_	_	μs	LP oscillator
			15		_	ns	HS oscillator
4*	TosR,	External Clock in (OSC1) Rise or	-	_	25	ns	XT oscillator
	TosF	Fall Time	_	_	50	ns	LP oscillator
			_	_	15	ns	HS oscillator

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 21-3: CLKOUT AND I/O TIMING

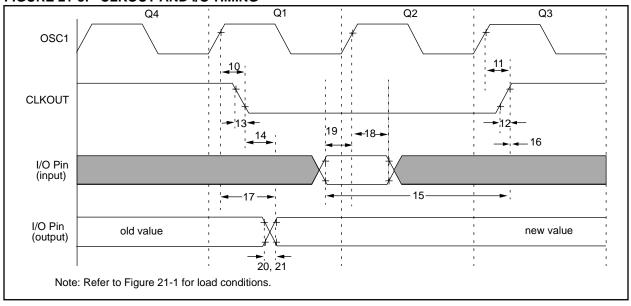


TABLE 21-3: CLKOUT AND I/O TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓	_	75	200	ns	Note 1	
11*	TosH2ckH	OSC1↑ to CLKOUT↑		_	75	200	ns	Note 1
12*	TckR	CLKOUT rise time		_	35	100	ns	Note 1
13*	TckF	CLKOUT fall time		_	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out valid	_	_	0.5Tcy + 20	ns	Note 1	
15*	TioV2ckH	Port in valid before CLKOUT ↑		Tosc + 200	_	_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT ↑	0	_	_	ns	Note 1	
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out va	lid	_	50	150	ns	
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input	PIC16C63/65A	100	_	_	ns	
		invalid (I/O in hold time)	PIC16LC63/65A	200	_	_	ns	
19*	TioV2osH	Port input valid to OSC1↑ (I/O in	setup time)	0	_	_	ns	
20*	TioR	Port output rise time	PIC16C63/65A	_	10	40	ns	
			PIC16LC63/65A	_	_	80	ns	
21*	TioF	Port output fall time	PIC16C63/65A	_	10	40	ns	
			PIC16LC63/65A	_	_	80	ns	
22††*	Tinp	INT pin high or low time	Tcy	_	_	ns		
23††*	Trbp	RB7:RB4 change INT high or lov	v time	Tcy	_	_	ns	

^{*} These parameters are characterized but not tested.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

^{††} These parameters are asynchronous events not related to any internal clock edge.

FIGURE 21-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

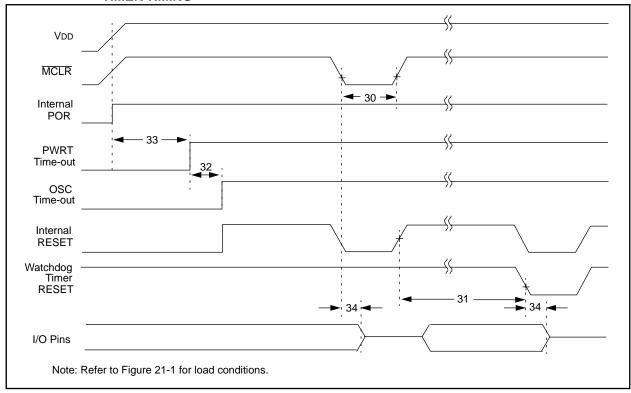


FIGURE 21-5: BROWN-OUT RESETTIMING

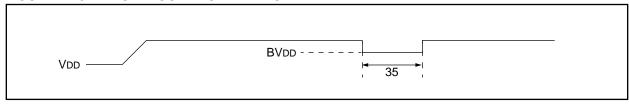


TABLE 21-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	_	_	μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	_	1024 Tosc	_	_	Tosc = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tıoz	I/O Hi-impedance from MCLR Low or WDT reset	_	_	2.1	μs	
35	TBOR	Brown-out Reset Pulse Width	100	_	_	μs	VDD ≤ BVDD (D005)

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 21-6: TIMERO AND TIMER1 CLOCK TIMINGS

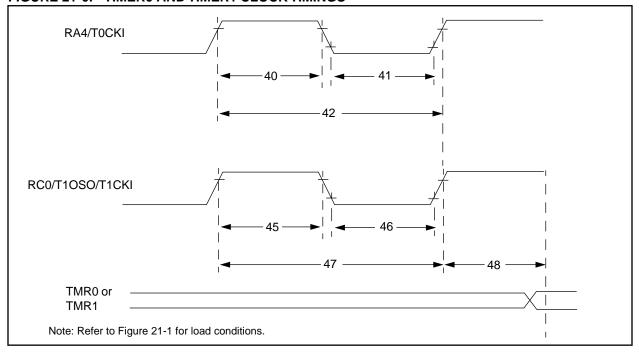


TABLE 21-5: TIMERO AND TIMER1 CLOCK REQUIREMENTS

Parameter No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse	Width	No Prescaler	0.5Tcy + 20	_	_	ns	
				With Prescaler	10	_	_	ns	
41*	TtOL	T0CKI Low Pulse	Width	No Prescaler	0.5Tcy + 20	_	_	ns	
				With Prescaler	10	_	_	ns	
42*	Tt0P	T0CKI Period			Tcy + 40 N	_	_	ns	N = prescale value (1, 2, 4,, 256)
45*	Tt1H	T1CKI High Time	Synchronous, I	No Prescaler	0.5Tcy + 20	-	_	ns	(1, 2, 4,, 200)
				PIC16C63/65A	15	_	_	ns	
			With Prescaler	PIC16LC63/65A	25	_	_	ns	
			Asynchronous		2Tcy	_	_	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, I	No Prescaler	0.5Tcy + 20	_	_	ns	
				PIC16C63/65A	15	_	_	ns	
			With Prescaler	PIC16LC63/65A	25	_	_	ns	
			Asynchronous		2TcY	_	_	ns	
47*	Tt1P	T1CKI input period	Synchronous		Tcy + 40 N	_	_	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		4Tcy	_	_	ns	
	Ft1		input frequency range ed by setting the T1OSCEN bit)		DC	_	200	kHz	
48	TCKEZtmr1	Delay from externa	al clock edge to	timer increment	2Tosc	_	7Tosc	_	

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 21-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

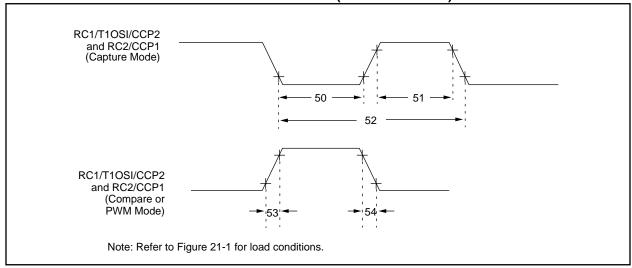


TABLE 21-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Parameter No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	100L OCI 1 and OCI 2 INOT lescale		No Prescaler		0.5Tcy + 20	_	_	ns	
		input low time	With Prescaler	PIC16C63/65A	10	_	_	ns	
				PIC16LC63/65A	20	_	_	ns	
51*	TccH	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	_	_	ns	
	input high time	With Prescaler	PIC16C63/65A	10	_	_	ns		
				PIC16LC63/65A	20	_	_	ns	
52*	TccP	CCP1 and CCP2 ir	nput period		3Tcy + 40 N	_	_	ns	N = prescale value (1,4, or 16)
53*	TccR	CCP1 and CCP2 o	utput rise time	PIC16C63/65A	_	10	25	ns	
				PIC16LC63/65A	_	25	45	ns	
54*	TccF	CCP1 and CCP2 o	utput fall time	PIC16C63/65A	_	10	25	ns	
				PIC16LC63/65A	_	25	45	ns	

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 21-8: PARALLEL SLAVE PORT TIMING (PIC16C65A)

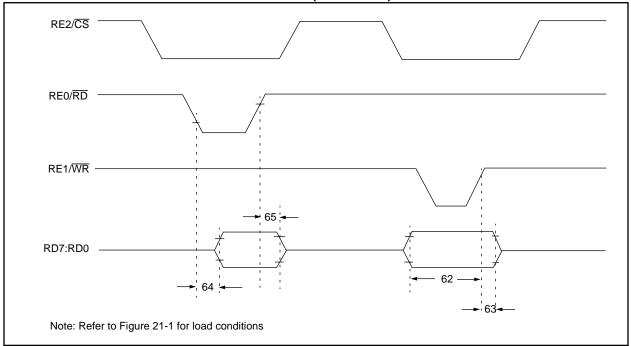


TABLE 21-7: PARALLEL SLAVE PORT REQUIREMENTS (PIC16C65A)

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
62*	TdtV2wrH	Data in valid before WR↑ or CS↑ (setup ti	me)	20	_	_	ns	
					_	_	ns	Automotive Range Only
63*	TwrH2dtl	WR↑ or CS↑ to data–in invalid (hold time)	PIC16C65A	20	_	_	ns	
			PIC16LC65A	35	_	_	ns	
64	TrdL2dtV	RD↓ and CS↓ to data–out valid		_	_	80	ns	
				_	_	90	ns	Automotive Range Only
65*	TrdH2dtl	RD↑ or CS↑ to data–out invalid		10	_	30	ns	

Characterized but not tested

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices | 61 | 62 | 62A | R62 | 63 | 64 | 64A | R64 | 65 | 65A

FIGURE 21-9: SPI MODE TIMING

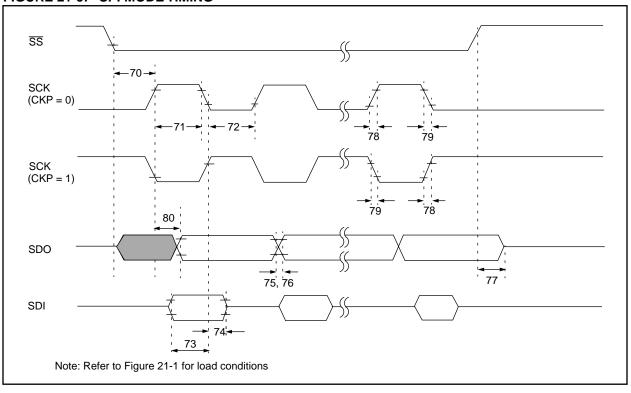


TABLE 21-8: SPI MODE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
70*	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input	Tcy	_	_	ns	
71*	TscH	SCK input high time (slave mode)	Tcy + 20	_	_	ns	
72*	TscL	SCK input low time (slave mode)	Tcy + 20	_	_	ns	
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	50	_	_	ns	
74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	50	_	_	ns	
75*	TdoR	SDO data output rise time		10	25	ns	
76*	TdoF	SDO data output fall time		10	25	ns	
77*	TssH2doZ	SS↓ to SDO output hi-impedance	10	_	50	ns	
78*	TscR	SCK output rise time (master mode)	_	10	25	ns	
79*	TscF	SCK output fall time (master mode)		10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_	_	50	ns	

^{*} Characterized but not tested

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 21-10: I²C BUS START/STOP BITS TIMING

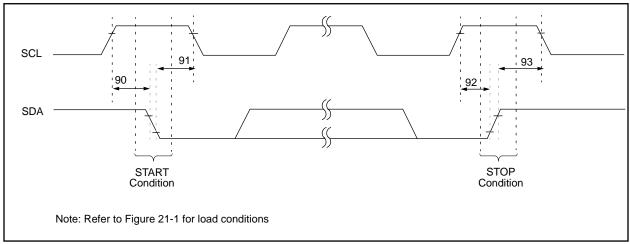


TABLE 21-9: I²C BUS START/STOP BITS REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур	Max	Units	Conditions
90*	TSU:STA	START condition	100 kHz mode	4700	_	_	ns	Only relevant for repeated START
		Setup time	400 kHz mode	600	_	_	113	condition
91*	THD:STA	START condition	100 kHz mode	4000	_	_	ns	After this period the first clock
		Hold time	400 kHz mode	600	_	_	115	pulse is generated
92*	Tsu:sto	STOP condition	100 kHz mode	4700	_	_	ns	
		Setup time	400 kHz mode	600	_	_	115	
93	THD:STO	STOP condition	100 kHz mode	4000	_	_	ns	
		Hold time	400 kHz mode	600	_	_	1115	

^{*}Characterized but not tested

FIGURE 21-11: I²C BUS DATA TIMING

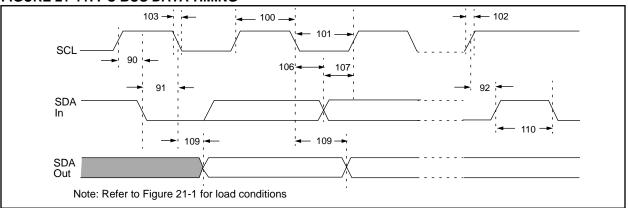
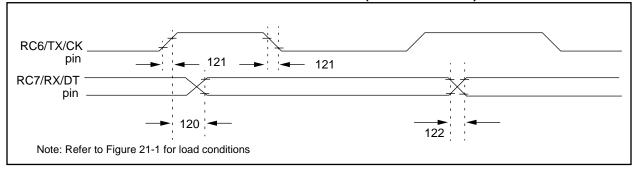


TABLE 21-10: I²C BUS DATA REQUIREMENTS


Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions
100*	THIGH	Clock high time	100 kHz mode	4.0	_	μs	PIC16C65A must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	_	μs	PIC16C65A must operate at a minimum of 10 MHz
			SSP Module	1.5TcY	_		
101*	TLOW	Clock low time	100 kHz mode	4.7	_	μѕ	PIC16C65A must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	_	μs	PIC16C65A must operate at a minimum of 10 MHz
			SSP Module	1.5TcY	_		
102*	Tr	SDA and SCL rise	100 kHz mode	_	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
103*	TF	SDA and SCL fall time	100 kHz mode	_	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
90*	Tsu:sta	START condition	100 kHz mode	4.7	_	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	_	μs	START condition
91*	THD:STA	START condition hold	100 kHz mode	4.0	_	μs	After this period the first clock
		time	400 kHz mode	0.6	_	μs	pulse is generated
106*	THD:DAT	Data input hold time	100 kHz mode	0		ns	At 125°C tested to 20 ns min.
			400 kHz mode	0	0.9	μs	
107*	Tsu:dat	Data input setup time	100 kHz mode	250		ns	Note 2
			400 kHz mode	100		ns	
92*	Tsu:sto	STOP condition setup	100 kHz mode	4.7		μs	
		time	400 kHz mode	0.6	1	μs	
109*	TAA	Output valid from	100 kHz mode	_	3500	ns	Note 1
		clock	400 kHz mode	_	_	ns	
110*	TBUF	Bus free time	100 kHz mode	4.7	_	μs	Time the bus must be free
			400 kHz mode	1.3	_	μs	before a new transmission can start
	Cb	Bus capacitive loading			400	pF	

^{*} Characterized but not tested

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

^{2:} A fast-mode l²C-bus device can be used in a standard-mode l²C-bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode l²C bus specification) before the SCL line is released.

FIGURE 21-12: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

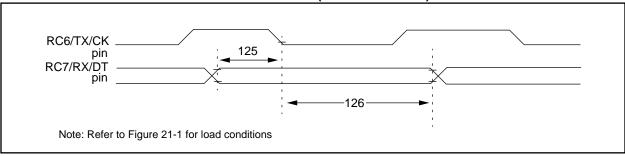


TABLE 21-11: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
120*	tckH2dtV	SYNC XMIT (MASTER & SLAVE)	PIC16C63/65A	_	_	80	ns	
		Clock high to data out valid	PIC16LC63/65A	_	_	100	ns	
121*	tckrf	Clock out rise time and fall time	PIC16C63/65A	_	_	45	ns	
		(Master Mode)	PIC16LC63/65A	_	_	50	ns	
122*	tdtrf	Data out rise time and fall time	PIC16C63/65A	_	_	45	ns	
			PIC16LC63/65A	_	_	50	ns	

^{*} Characterized but not tested

FIGURE 21-13: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 21-12: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Typ†	Max	Units	Conditions
125*	tdtV2ckl	SYNC RCV (MASTER & SLAVE) Data hold before CK ↓ (DT hold time)	15	_	_	ns	
126*	tckL2dtl	Data hold after CK ↓ (DT hold time)	15	_	_	ns	

Characterized but not tested

^{†:} Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

^{†:} Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

22.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR: PIC16C62, PIC16C62A, PIC16C62, PIC16C63, PIC16C64, PIC16C64A, PIC16C65A

he graphs and tables provided in this section are for design guidance and are not tested or guaranteed.

In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range.

Note: The data presented in this section is a statistical summary of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at, 25°C, while 'max' or 'min' represents (mean +3 σ) and (mean -3 σ) respectively where σ is standard deviation.

FIGURE 22-1: TYPICAL IPD vs. VDD (WDT DISABLED, RC MODE)

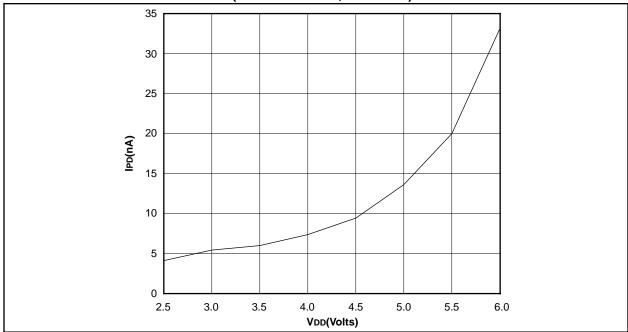
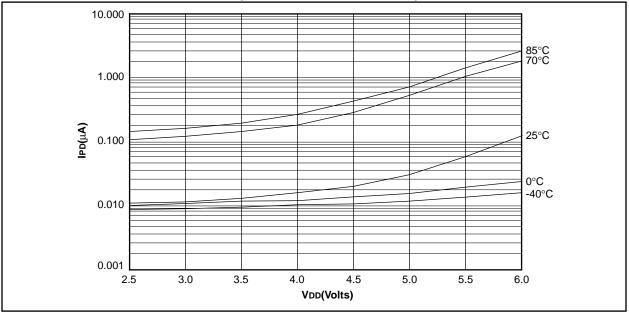



FIGURE 22-2: MAXIMUM IPD vs. VDD (WDT DISABLED, RC MODE)

© 1996 Microchip Technology Inc.

DS30234C_1-page 235

FIGURE 22-3: TYPICAL IPD vs. VDD @ 25°C (WDT ENABLED, RC MODE)

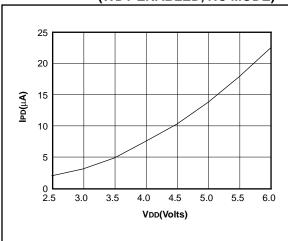


FIGURE 22-4: MAXIMUM IPD vs. VDD (WDT ENABLED, RC MODE)

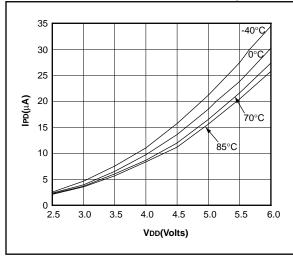


FIGURE 22-5: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

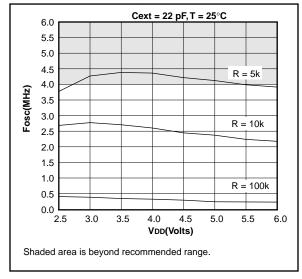


FIGURE 22-6: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

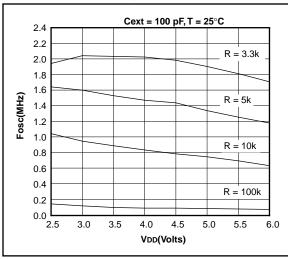


FIGURE 22-7: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

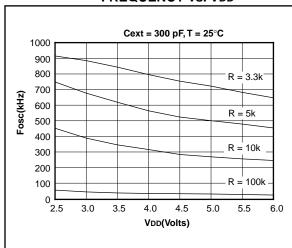


FIGURE 22-8: TYPICAL IPD vs. VDD BROWN-OUT DETECT ENABLED (RC MODE)

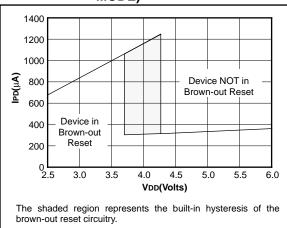


FIGURE 22-9: MAXIMUM IPD vs. VDD
BROWN-OUT DETECT
ENABLED
(85°C TO -40°C, RC MODE)

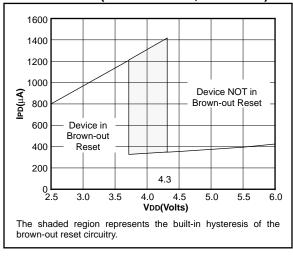


FIGURE 22-10: TYPICAL IPD vs. TIMER1 ENABLED (32 kHz, RC0/RC1 = 33 pF/33 pF, RC MODE)

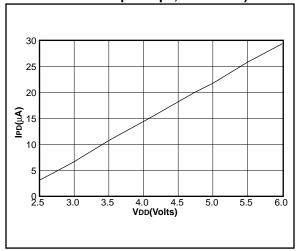
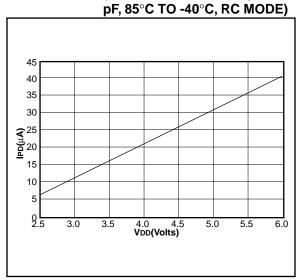



FIGURE 22-11: MAXIMUM IPD vs. TIMER1 ENABLED (32 kHz, RC0/RC1 = 33 pF/33

Data based on matrix samples. See first page of this section for details.

Data based on matrix samples. See first page of this section for details.

FIGURE 22-12: TYPICAL IDD vs. FREQUENCY (RC MODE @ 22 pF, 25°C)

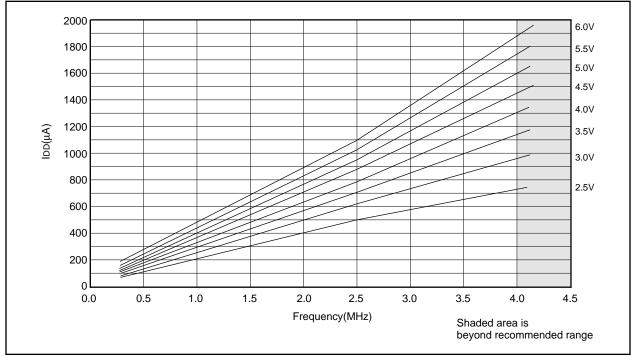


FIGURE 22-13: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 22 pF, -40°C TO 85°C)

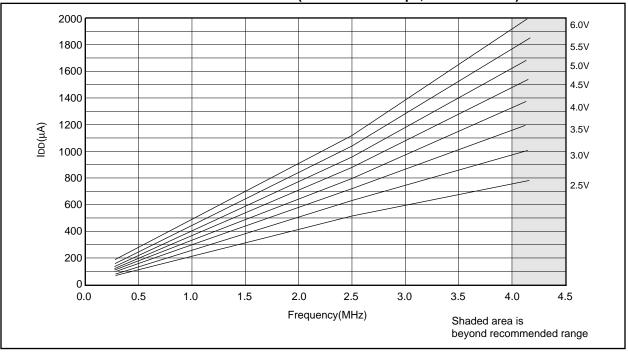


FIGURE 22-14: TYPICAL IDD vs. FREQUENCY (RC MODE @ 100 pF, 25°C)

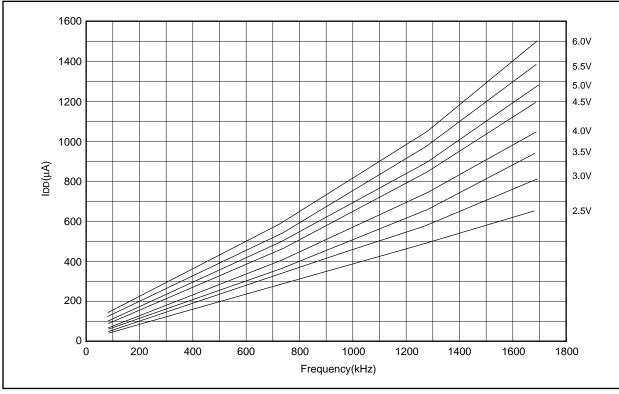


FIGURE 22-15: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 100 pF, -40°C TO 85°C)

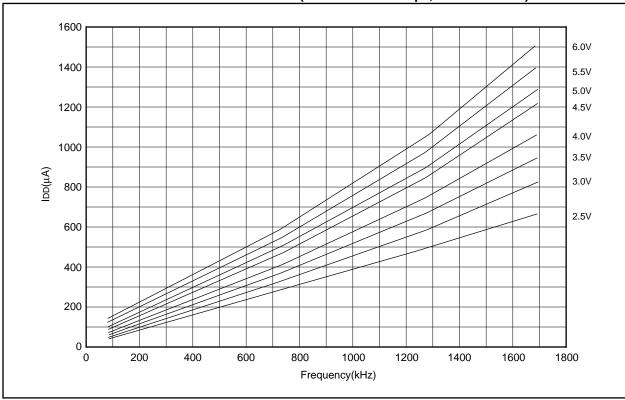


FIGURE 22-16: TYPICAL IDD vs. FREQUENCY (RC MODE @ 300 pF, 25°C)

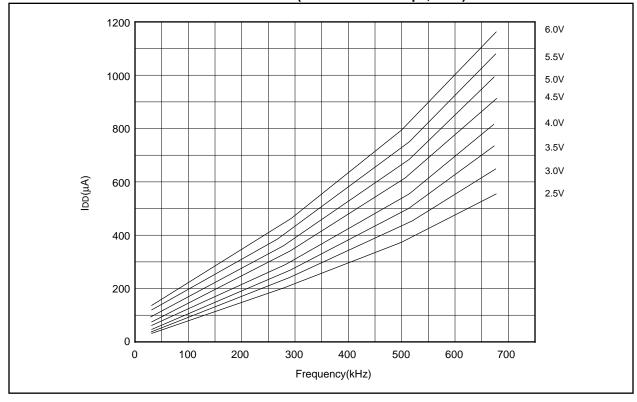


FIGURE 22-17: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 300 pF, -40°C TO 85°C)

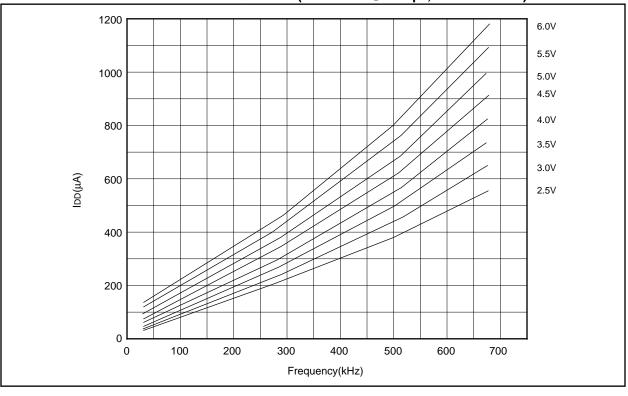


FIGURE 22-18: TYPICAL IDD vs.

CAPACITANCE @ 500 kHz

(RC MODE)

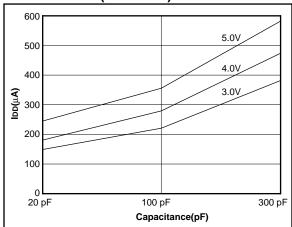


TABLE 22-1: RC OSCILLATOR FREQUENCIES

Cext	Rext	Average				
Cext	Next	Fosc @ 5V, 25°C				
22 pF	5k	4.12 MHz	± 1.4%			
	10k	2.35 MHz	± 1.4%			
	100k	268 kHz	± 1.1%			
100 pF	3.3k	1.80 MHz	± 1.0%			
	5k	1.27 MHz	± 1.0%			
	10k	688 kHz	± 1.2%			
	100k	77.2 kHz	± 1.0%			
300 pF	3.3k	707 kHz	± 1.4%			
	5k	501 kHz	± 1.2%			
	10k	269 kHz	± 1.6%			
	100k	28.3 kHz	± 1.1%			

The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ± 3 standard deviation from average value for VDD = 5V.

FIGURE 22-19: TRANSCONDUCTANCE(gm)
OF HS OSCILLATOR vs. VDD

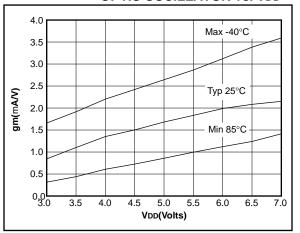


FIGURE 22-20: TRANSCONDUCTANCE(gm)
OF LP OSCILLATOR vs. VDD

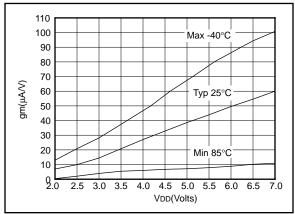


FIGURE 22-21: TRANSCONDUCTANCE(gm)
OF XT OSCILLATOR vs. VDD

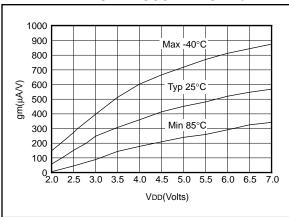


FIGURE 22-22: TYPICAL XTAL STARTUP
TIME vs. VDD (LP MODE, 25°C)

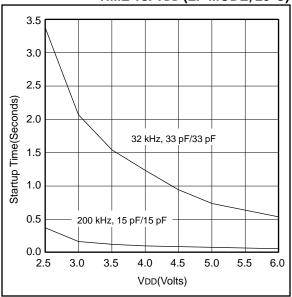


FIGURE 22-23: TYPICAL XTAL STARTUP TIME vs. VdD (HS MODE, 25° C)

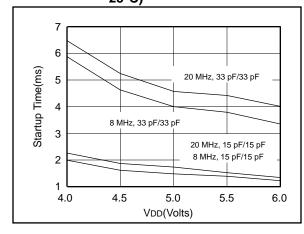


FIGURE 22-24: TYPICAL XTAL STARTUP TIME vs. VdD (XT MODE, 25°C)

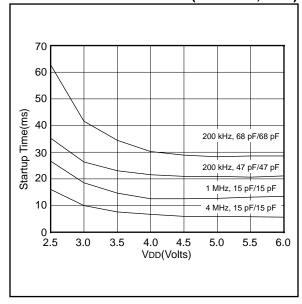


TABLE 22-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATORS

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15 pF
XT	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15-33 pF	15-33 pF
	20 MHz	15-33 pF	15-33 pF
Crystals Used			
32 kHz	Epson C-00	01R32.768K-A	± 20 PPM
200 kHz	STD XTL 2	00.000KHz	± 20 PPM
1 MHz	ECS ECS-	10-13-1	± 50 PPM
4 MHz	ECS ECS-4	ECS ECS-40-20-1	
8 MHz	EPSON CA	-301 8.000M-C	± 30 PPM
20 MHz	EPSON CA	A-301 20.000M-C	± 30 PPM

FIGURE 22-25: TYPICAL IDD vs. FREQUENCY (LP MODE, 25°C)

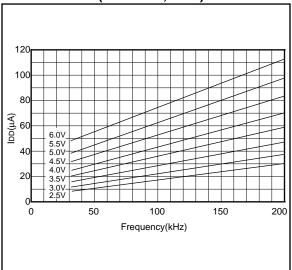


FIGURE 22-26: MAXIMUM IDD vs. FREQUENCY (LP MODE, 85°C TO -40°C)

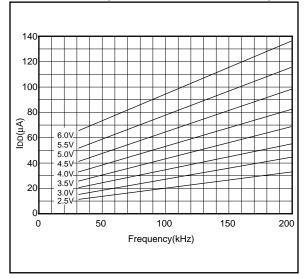


FIGURE 22-27: TYPICAL IDD vs. FREQUENCY (XT MODE, 25°C)

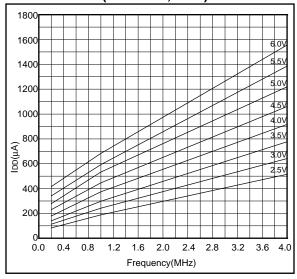


FIGURE 22-28: MAXIMUM IDD vs.
FREQUENCY
(XT MODE, -40°C TO 85°C)

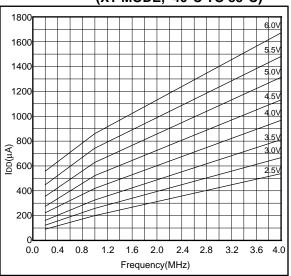


FIGURE 22-29: TYPICAL IDD vs. FREQUENCY (HS MODE, 25°C)

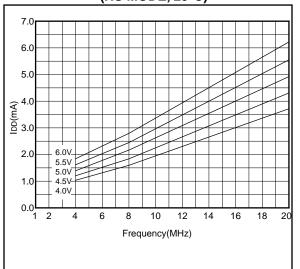
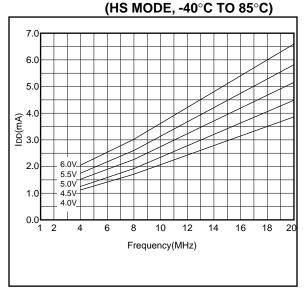
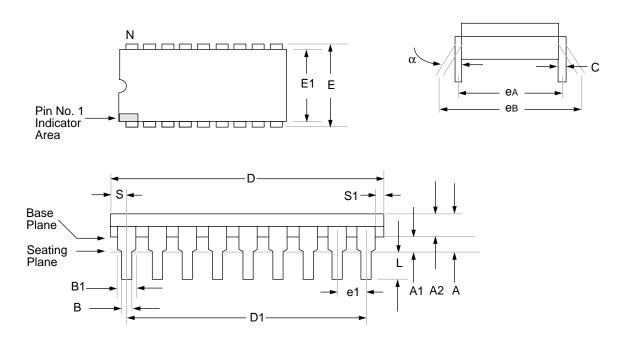
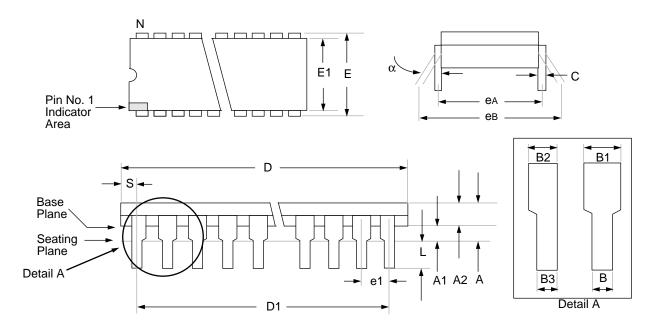
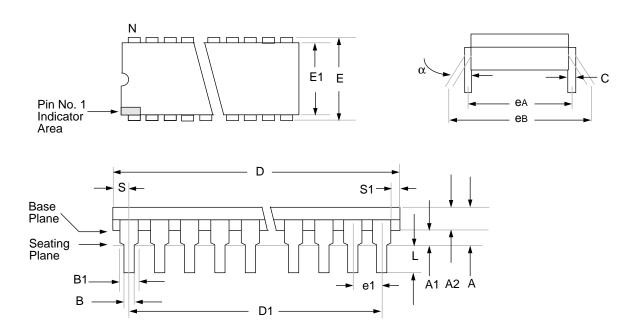




FIGURE 22-30: MAXIMUM IDD vs.
FREQUENCY

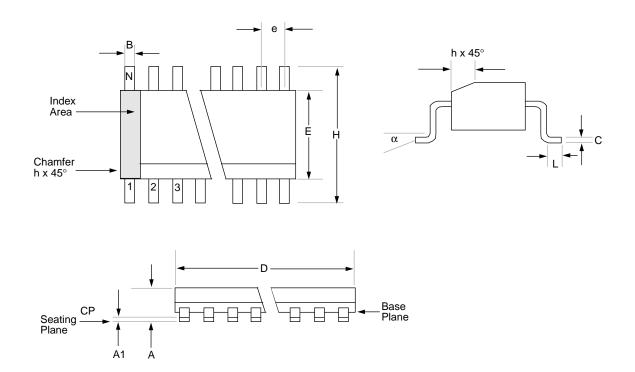
23.0 PACKAGING INFORMATION


23.1 18-Lead Plastic Dual In-line (300 mil)

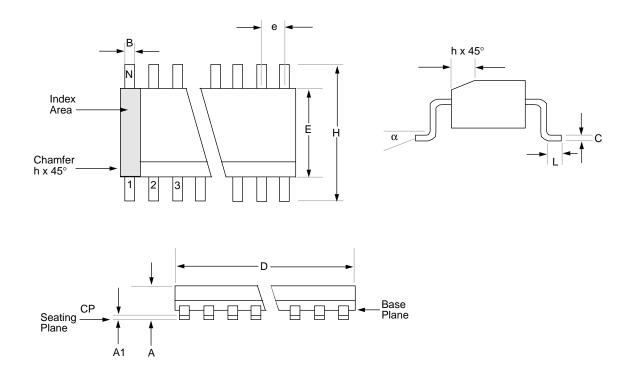
Package Group: Plastic Dual In-Line (PLA)									
		Millimeters			Inches				
Symbol	Min	Max	Notes	Min	Max	Notes			
α	0°	10°		0°	10°				
А	_	4.064		_	0.160				
A1	0.381	_		0.015	_				
A2	3.048	3.810		0.120	0.150				
В	0.355	0.559		0.014	0.022				
B1	1.524	1.524	Reference	0.060	0.060	Reference			
С	0.203	0.381	Typical	0.008	0.015	Typical			
D	22.479	23.495		0.885	0.925				
D1	20.320	20.320	Reference	0.800	0.800	Reference			
Е	7.620	8.255		0.300	0.325				
E1	6.096	7.112		0.240	0.280				
e1	2.489	2.591	Typical	0.098	0.102	Typical			
eA	7.620	7.620	Reference	0.300	0.300	Reference			
eB	7.874	9.906		0.310	0.390				
L	3.048	3.556		0.120	0.140				
N	18	18		18	18				
S	0.889	_		0.035	_				
S1	0.127	_		0.005	_				


© 1996 Microchip Technology Inc.

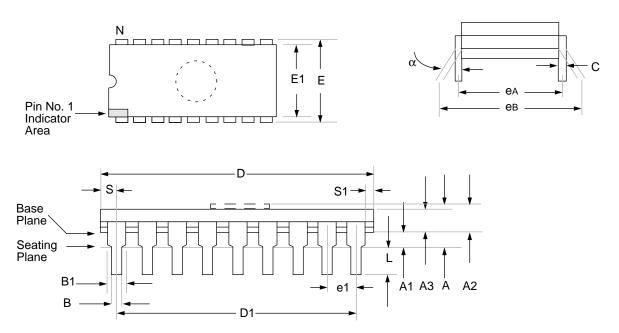
23.2 <u>28-Lead Plastic Dual In-line (300 mil)</u>


	Package Group: Plastic Dual In-Line (PLA)									
		Millimeters			Inches					
Symbol	Min	Max	Notes	Min	Max	Notes				
α	0°	10°		0°	10°					
Α	3.632	4.572		0.143	0.180					
A1	0.381	_		0.015	_					
A2	3.175	3.556		0.125	0.140					
В	0.406	0.559		0.016	0.022					
B1	1.016	1.651	Typical	0.040	0.065	Typical				
B2	0.762	1.016	4 places	0.030	0.040	4 places				
B3	0.203	0.508	4 places	0.008	0.020	4 places				
С	0.203	0.331	Typical	0.008	0.013	Typical				
D	34.163	35.179		1.385	1.395					
D1	33.020	33.020	Reference	1.300	1.300	Reference				
E	7.874	8.382		0.310	0.330					
E1	7.112	7.493		0.280	0.295					
e1	2.540	2.540	Typical	0.100	0.100	Typical				
eA	7.874	7.874	Reference	0.310	0.310	Reference				
eB	8.128	9.652		0.320	0.380					
L	3.175	3.683		0.125	0.145					
N	28	28		28	28					
S	0.584	1.220		0.023	0.048					

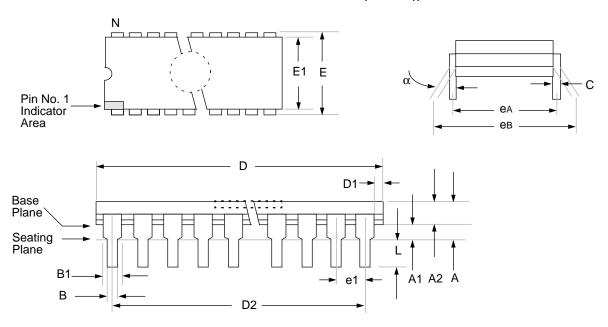
23.3 40-Lead Plastic Dual In-line (600 mil)


	Package Group: Plastic Dual In-Line (PLA)									
		Millimeters		Inches						
Symbol	Min	Max	Notes	Min	Max	Notes				
α	0°	10°		0°	10°					
Α	_	5.080		_	0.200					
A1	0.381	_		0.015	_					
A2	3.175	4.064		0.125	0.160					
В	0.355	0.559		0.014	0.022					
B1	1.270	1.778	Typical	0.050	0.070	Typical				
С	0.203	0.381	Typical	0.008	0.015	Typical				
D	51.181	52.197		2.015	2.055					
D1	48.260	48.260	Reference	1.900	1.900	Reference				
E	15.240	15.875		0.600	0.625					
E1	13.462	13.970		0.530	0.550					
e1	2.489	2.591	Typical	0.098	0.102	Typical				
eA	15.240	15.240	Reference	0.600	0.600	Reference				
eB	15.240	17.272		0.600	0.680					
L	2.921	3.683		0.115	0.145					
N	40	40		40	40					
S	1.270	_		0.050	_					
S1	0.508	_		0.020	_					

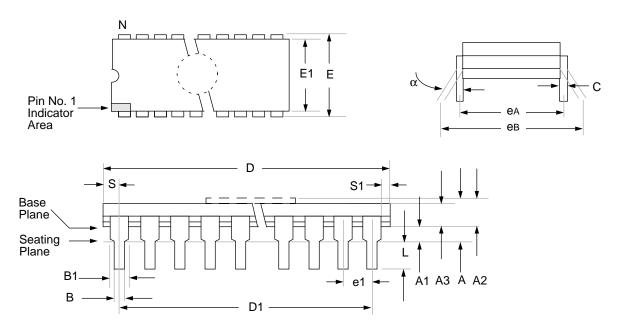
23.4 18-Lead Plastic Surface Mount (SOIC - Wide, 300 mil Body)


	Package Group: Plastic SOIC (SO)										
	Millimeters										
Symbol	Min	Max	Notes	Min	Max	Notes					
α	0°	8°		0°	8°						
Α	2.362	2.642		0.093	0.104						
A1	0.101	0.300		0.004	0.012						
В	0.355	0.483		0.014	0.019						
С	0.241	0.318		0.009	0.013						
D	11.353	11.735		0.447	0.462						
Е	7.416	7.595		0.292	0.299						
е	1.270	1.270	Reference	0.050	0.050	Reference					
Н	10.007	10.643		0.394	0.419						
h	0.381	0.762		0.015	0.030						
L	0.406	1.143		0.016	0.045						
N	18	18		18	18						
CP	_	0.102		_	0.004						

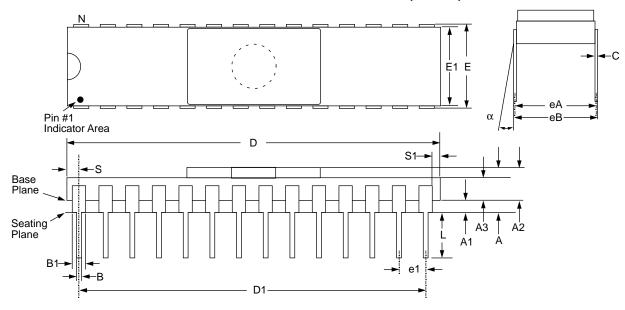
23.5 28-Lead Plastic Surface Mount (SOIC - Wide, 300 mil Body)


	Package Group: Plastic SOIC (SO)										
		Millimeters			Inches						
Symbol	Min	Max	Notes	Min	Max	Notes					
α	0°	8°		0°	8°						
Α	2.362	2.642		0.093	0.104						
A1	0.101	0.300		0.004	0.012						
В	0.355	0.483		0.014	0.019						
С	0.241	0.318		0.009	0.013						
D	17.703	18.085		0.697	0.712						
E	7.416	7.595		0.292	0.299						
е	1.270	1.270	Typical	0.050	0.050	Typical					
Н	10.007	10.643		0.394	0.419						
h	0.381	0.762		0.015	0.030						
L	0.406	1.143		0.016	0.045						
N	28	28		28	28						
СР	_	0.102		_	0.004						

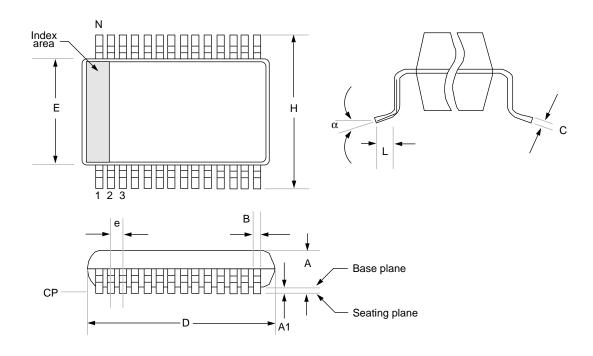
23.6 18-Lead Ceramic CERDIP Dual In-line with Window (300 mil)


	Package Group: Ceramic CERDIP Dual In-Line (CDP)									
		Millimeters								
Symbol	Min	Max	Notes	Min	Max	Notes				
α	0°	10°		0°	10°					
Α	_	5.080		_	0.200					
A1	0.381	1.778		0.015	0.070					
A2	3.810	4.699		0.150	0.185					
А3	3.810	4.445		0.150	0.175					
В	0.355	0.585		0.014	0.023					
B1	1.270	1.651	Typical	0.050	0.065	Typical				
С	0.203	0.381	Typical	0.008	0.015	Typical				
D	22.352	23.622		0.880	0.930					
D1	20.320	20.320	Reference	0.800	0.800	Reference				
E	7.620	8.382		0.300	0.330					
E1	5.588	7.874		0.220	0.310					
e1	2.540	2.540	Reference	0.100	0.100	Reference				
eA	7.366	8.128	Typical	0.290	0.320	Typical				
eB	7.620	10.160		0.300	0.400					
L	3.175	3.810		0.125	0.150					
N	18	18		18	18					
S	0.508	1.397		0.020	0.055					
S1	0.381	1.270		0.015	0.050					

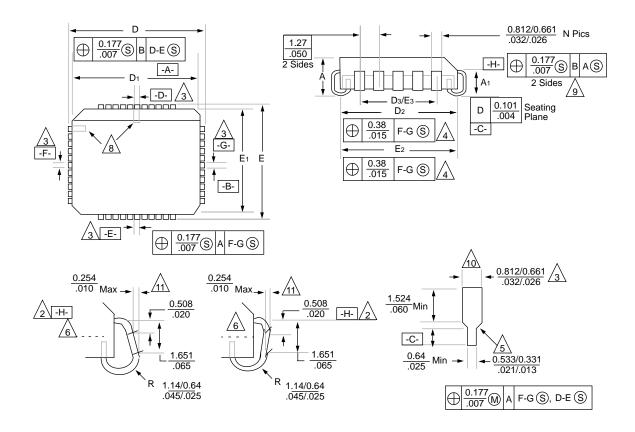
23.7 28-Lead Ceramic CERDIP Dual In-line with Window (300 mil))


	Package Group: Ceramic CERDIP Dual In-Line (CDP)									
	Millimeters									
Symbol	Min	Max	Notes	Min	Max	Notes				
α	0°	10°		0°	10°					
Α	3.30	5.84		.130	0.230					
A1	0.38	_		0.015	_					
A2	2.92	4.95		0.115	0.195					
В	0.35	0.58		0.014	0.023					
B1	1.14	1.78	Typical	0.045	0.070	Typical				
С	0.20	0.38	Typical	0.008	0.015	Typical				
D	34.54	37.72		1.360	1.485					
D2	32.97	33.07	Reference	1.298	1.302	Reference				
E	7.62	8.25		0.300	0.325					
E1	6.10	7.87		0.240	0.310					
е	2.54	2.54	Typical	0.100	0.100	Typical				
eA	7.62	7.62	Reference	0.300	0.300	Reference				
eB	_	11.43		_	0.450					
L	2.92	5.08		0.115	0.200					
N	28	28		28	28					
D1	0.13	_		0.005	_					

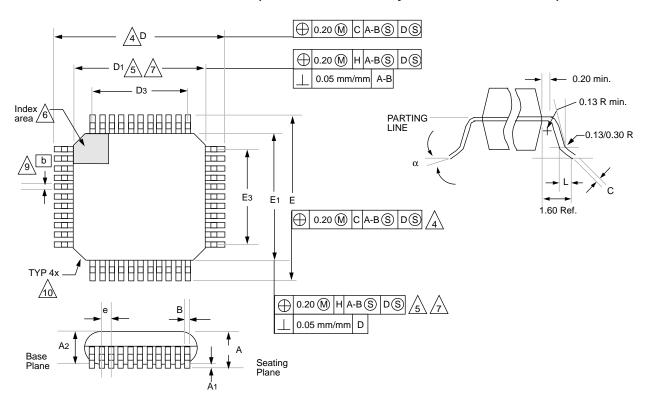
23.8 40-Lead Ceramic CERDIP Dual In-line with Window (600 mil)


	Package Group: Ceramic CERDIP Dual In-Line (CDP)									
		Millimeters		Inches						
Symbol	Min	Max	Notes	Min	Max	Notes				
α	0°	10°		0°	10°					
Α	4.318	5.715		0.170	0.225					
A1	0.381	1.778		0.015	0.070					
A2	3.810	4.699		0.150	0.185					
A3	3.810	4.445		0.150	0.175					
В	0.355	0.585		0.014	0.023					
B1	1.270	1.651	Typical	0.050	0.065	Typical				
С	0.203	0.381	Typical	0.008	0.015	Typical				
D	51.435	52.705		2.025	2.075					
D1	48.260	48.260	Reference	1.900	1.900	Reference				
Е	15.240	15.875		0.600	0.625					
E1	12.954	15.240		0.510	0.600					
e1	2.540	2.540	Reference	0.100	0.100	Reference				
eA	14.986	16.002	Typical	0.590	0.630	Typical				
eВ	15.240	18.034		0.600	0.710					
L	3.175	3.810		0.125	0.150					
N	40	40		40	40					
S	1.016	2.286		0.040	0.090					
S1	0.381	1.778		0.015	0.070					

23.9 28-Lead Ceramic Side Brazed Dual In-Line with Window (300 mil)


	Package Group: Ceramic Side Brazed Dual In-Line (CER)						
0		Millimeters		Inches			
Symbol	Min	Max	Notes	Min	Max	Notes	
α	0°	10°		0°	10°		
Α	3.937	5.030		0.155	0.198		
A1	1.016	1.524		0.040	0.060		
A2	2.921	3.506		0.115	0.138		
A3	1.930	2.388		0.076	0.094		
В	0.406	0.508		0.016	0.020		
B1	1.219	1.321	Typical	0.048	0.052		
С	0.228	0.305	Typical	0.009	0.012		
D	35.204	35.916		1.386	1.414		
D1	32.893	33.147	Reference	1.295	1.305		
E	7.620	8.128		0.300	0.320		
E1	7.366	7.620		0.290	0.300		
e1	2.413	2.667	Typical	0.095	0.105		
eA	7.366	7.874	Reference	0.290	0.310		
eB	7.594	8.179		0.299	0.322		
L	3.302	4.064		0.130	0.160		
N	28	28		28	28		
S	1.143	1.397		0.045	0.055		
S1	0.533	0.737		0.021	0.029		

23.10 28-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm)


	Package Group: Plastic SSOP							
		Millimeters			Inches			
Symbol	Min	Max	Notes	Min	Max	Notes		
α	0°	8°		0°	8°			
Α	1.730	1.990		0.068	0.078			
A1	0.050	0.210		0.002	0.008			
В	0.250	0.380		0.010	0.015			
С	0.130	0.220		0.005	0.009			
D	10.070	10.330		0.396	0.407			
E	5.200	5.380		0.205	0.212			
е	0.650	0.650	Reference	0.026	0.026	Reference		
Н	7.650	7.900		0.301	0.311			
L	0.550	0.950		0.022	0.037			
N	28	28		28	28			
СР	-	0.102		-	0.004			

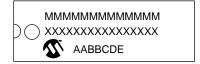
23.11 44-Lead Plastic Leaded Chip Carrier (Square)

	Package Group: Plastic Leaded Chip Carrier (PLCC)							
		Millimeters		Inches				
Symbol	Min	Max	Notes	Min	Max	Notes		
Α	4.191	4.572		0.165	0.180			
A1	2.413	2.921		0.095	0.115			
D	17.399	17.653		0.685	0.695			
D1	16.510	16.663		0.650	0.656			
D2	15.494	16.002		0.610	0.630			
D3	12.700	12.700	Reference	0.500	0.500	Reference		
Е	17.399	17.653		0.685	0.695			
E1	16.510	16.663		0.650	0.656			
E2	15.494	16.002		0.610	0.630			
E3	12.700	12.700	Reference	0.500	0.500	Reference		
N	44	44		44	44			
СР	_	0.102		_	0.004			
LT	0.203	0.381		0.008	0.015			

23.12 44-Lead Plastic Surface Mount (MQFP 10x10 mm Body 1.6/0.15 mm Lead Form)

	Package Group: Plastic MQFP							
		Millimeters		Inches				
Symbol	Min	Max	Notes	Min	Max	Notes		
α	0°	7°		0°	7°			
А	2.000	2.350		0.078	0.093			
A1	0.050	0.250		0.002	0.010			
A2	1.950	2.100		0.768	0.083			
b	0.300	0.450	Typical	0.011	0.018	Typical		
С	0.150	0.180		0.006	0.007			
D	12.950	13.450		0.510	0.530			
D1	9.900	10.100		0.390	0.398			
D3	8.000	8.000	Reference	0.315	0.315	Reference		
E	12.950	13.450		0.510	0.530			
E1	9.900	10.100		0.390	0.398			
E3	8.000	8.000	Reference	0.315	0.315	Reference		
е	0.800	0.800		0.031	0.032			
L	0.730	1.030		0.028	0.041			
N	44	44		44	44			
СР	0.102	_		0.004	_			

1.0ø (0.039ø) Ref. 11°/13°(4x) Pin#1 Pin#1 2 == 0° Min Е E1 11°/13°(4x) ПП Detail B -3.0ø (0['].118ø) Ref. R1 0.08 Min Option 1 (TOP side) R 0.08/0.20 Option 2 (TOP side) Gage Plane 0.250 Base Metal Lead Finish 0.20 Min С · c1 **Detail A Detail B** 1.00 Ref 1.00 Ref. b1 **Detail B Detail A**


23.13 44-Lead Plastic Surface Mount (TQFP 10x10 mm Body 1.0/0.10 mm Lead Form)

	Package Group: Plastic TQFP							
		Millimeters			Inches			
Symbol	Min	Max	Notes	Min	Max	Notes		
Α	1.00	1.20		0.039	0.047			
A1	0.05	0.15		0.002	0.006			
A2	0.95	1.05		0.037	0.041			
D	11.75	12.25		0.463	0.482			
D1	9.90	10.10		0.390	0.398			
E	11.75	12.25		0.463	0.482			
E1	9.90	10.10		0.390	0.398			
L	0.45	0.75		0.018	0.030			
е	0.80	BSC		0.031	BSC			
b	0.30	0.45		0.012	0.018			
b1	0.30	0.40		0.012	0.016			
С	0.09	0.20		0.004	0.008			
c1	0.09	0.16		0.004	0.006			
N	44	44		44	44			
Θ	0°	7°		0°	7°			

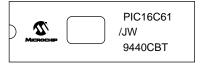
- Note 1: Dimensions D1 and E1 do not include mold protrusion. Allowable mold protrusion is 0.25m/m (0.010") per side. D1 and E1 dimensions including mold mismatch.
 - 2: Dimension "b" does not include Dambar protrusion, allowable Dambar protrusion shall be 0.08m/m (0.003")max.
 - 3: This outline conforms to JEDEC MS-026.

23.14 Package Marking Information

18-Lead PDIP

Example

18-Lead SOIC

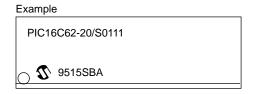

Example


18-Lead CERDIP Windowed

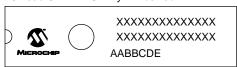
Example

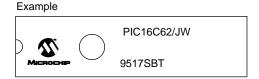
28-Lead PDIP (.300 MIL)

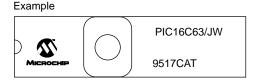
Example

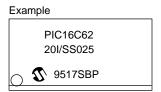


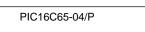
Legend:	MMM	Microchip part number information			
	XXX	Customer specific information*			
	AA	Year code (last 2 digits of calender year)			
	BB	Week code (week of January 1 is week '01')			
	С	Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A. S = Tempe, Arizona, U.S.A. Mask revision number for microcontroller			
	D ₁ D ₂	Mask revision number for EEPROM			
	E	Assembly code of the plant or country of origin in which part was assembled.			
Note:	line, it will b	t the full Microchip part number cannot be marked on one be carried over to the next line thus limiting the number of paracters for customer specific information.			


Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.


Package Marking Information (Cont'd)

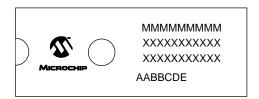

28-Lead CERDIP Skinny Windowed


28-Lead Side Brazed Skinny Windowed

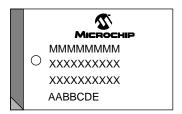


40-Lead PDIP

Example



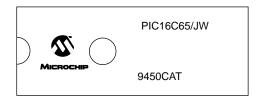
Legend:	MMM	Microchip part number information
	XXX	Customer specific information*
	AA	Year code (last 2 digits of calender year)
	BB	Week code (week of January 1 is week '01')
	С	Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A. S = Tempe, Arizona, U.S.A.
	D ₁ E	Mask revision number for microcontroller Assembly code of the plant or country of origin in which part was assembled.
Note:	line, it will b	t the full Microchip part number cannot be marked on one be carried over to the next line thus limiting the number of the haracters for customer specific information.

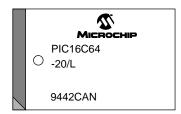

^{*} Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

Package Marking Information (Cont'd)

40-Lead CERDIP Windowed

44-Lead PLCC


44-Lead MQFP


44-Lead TQFP

Example

Example

Example

Example

Legend:	MMM	Microchip part number information			
	XXX	• •			
	۸۸۸	Customer specific information*			
	AA	Year code (last 2 digits of calender year)			
	BB	Week code (week of January 1 is week '01')			
	С	Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A. S = Tempe, Arizona, U.S.A.			
	D ₁	Mask revision number for microcontroller			
	E	Assembly code of the plant or country of origin in which part was assembled.			
Note:	line, it will b	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.			

^{*} Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

APPENDIX A: MODIFICATIONS

The following are the list of modifications over the PIC16C5X microcontroller family:

- Instruction word length is increased to 14-bits.
 This allows larger page sizes both in program memory (4K now as opposed to 512 before) and register file (192 bytes now versus 32 bytes before).
- 2. A PC high latch register (PCLATH) is added to handle program memory paging. PA2, PA1, PA0 bits are removed from STATUS register.
- Data memory paging is redefined slightly. STA-TUS register is modified.
- Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW. Two instructions TRIS and OPTION are being phased out although they are kept for compatibility with PIC16C5X.
- OPTION and TRIS registers are made addressable.
- Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to 8 deep.
- 8. Reset vector is changed to 0000h.
- Reset of all registers is revisited. Five different reset (and wake-up) types are recognized. Registers are reset differently.
- Wake-up from SLEEP through interrupt is added.
- 11. Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT), are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt on change feature.
- 13. Timer0 pin is also a port pin (RA4/T0CKI) now.
- 14. FSR is made a full 8-bit register.
- "In-circuit programming" is made possible. The user can program PIC16CXX devices using only five pins: VDD, Vss, VPP, RB6 (clock) and RB7 (data in/out).
- Power Control register (PCON) is added with a Power-on Reset status bit (POR). (Not on the PIC16C61).
- Brown-out Reset has been added to the following devices: PIC16C62A/R62/63/64A/R64/65A.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16C5X to PIC16CXX, the user should take the following steps:

- Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
- Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change reset vector to 0000h.

APPENDIX C: WHAT'S NEW

Added characterization data for all previously uncharacterized PIC16C6X devices.

APPENDIX D: WHAT'S CHANGED

Minor changes, spelling and grammatical changes.

APPENDIX E: PIC16/17 MICROCONTROLLERS

E.1 PIC12C5XX Family of Devices

		PIC12C508	PIC12C509
Clock	Maximum Frequency of Operation (MHz)	4	4
Memory	EPROM Program Memory	512	1024
Welliory	Data Memory (bytes)	25	41
Peripherals	Timer Module(s)	TMR0	TMR0
	Wake-up from SLEEP on pin change	Yes	Yes
	I/O Pins	5	5
	Input Pins	1	1
	Internal Pull-ups	Yes	Yes
Features	Voltage Range (Volts)	2.5-5.5	2.5-5.5
	In-Circuit Serial Programming	Yes	Yes
	Number of Instructions	33	33
	Packages	8-pin PDIP, 8-pin SOIC	8-pin PDIP, 8-pin SOIC

7D1 1

E.2 PIC14000 Devices

		PIC14000
Clock	Maximum Frequency of Operation (MHz)	20
	EPROM Program Memory (x14 words)	4K
Memory	Data Memory (bytes)	192
	Timer Module(s)	TMR0 ADTMR
Peripherals	Serial Port(s) (SPI/I ² C, USART	I ² C with SMBus Support
	Slope A/D Converter Channels	8 External 6 Internal
	Interrupt Sources	11
	I/O Pins	22
	Voltage Range (Volts)	2.7-6.0
	In-Circuit Serial Programming	Yes
Features	Additional On-chip Features	Internal Oscillator, Bandgap Reference, Temperature Sensor, Calibration Factors, Low Voltage Detector, SLEEP, HIBERNATE, Comparators with Programmable References (2)
	Packages	28-pin DIP, SOIC, SSOP (.300 mil)

E.3 PIC16C5X Family of Devices

		PIC16C52	PIC16C54	PIC16C54A	PIC16CR54A	PIC16C55	PIC16C56
Clock	Maximum Frequency of Operation (MHz)	4	20	20	20	20	20
	EPROM Program Memory (x12 words)	384	512	512	_	512	1K
Memory	ROM Program Memory (x12 words)	_	_	_	512	_	_
	RAM Data Memory (bytes)	25	25	25	25	24	25
Peripherals	Timer Module(s)	TMR0	TMR0	TMR0	TMR0	TMR0	TMR0
	I/O Pins	12	12	12	12	20	12
	Voltage Range (Volts)	2.5-6.25	2.5-6.25	2.0-6.25	2.0-6.25	2.5-6.25	2.5-6.25
Features	Number of Instructions	33	33	33	33	33	33
	Packages	18-pin DIP, SOIC	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	28-pin DIP, SOIC, SSOP	18-pin DIP, SOIC; 20-pin SSOP

		PIC16C57	PIC16CR57B	PIC16C58A	PIC16CR58A
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20
	EPROM Program Memory (x12 words)	2K	_	2K	_
Memory	ROM Program Memory (x12 words)	_	2K	_	2K
	RAM Data Memory (bytes)	72	72	73	73
Peripherals	Timer Module(s)	TMR0	TMR0	TMR0	TMR0
	I/O Pins	20	20	12	12
	Voltage Range (Volts)	2.5-6.25	2.5-6.25	2.0-6.25	2.5-6.25
Features	Number of Instructions	33	33	33	33
	Packages	28-pin DIP, SOIC, SSOP	28-pin DIP, SOIC, SSOP	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability.

E.4 PIC16CXXX Family of Devices

		PIC16C554	PIC16C556	PIC16C558	PIC16C620	PIC16C621	PIC16C622
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20	20
Memory	EPROM Program Memory (x14 words)	512	1K	2K	512	1K	2K
	Data Memory (bytes)	80	80	128	80	80	128
	Timer Module(s)	TMR0	TMR0	TMR0	TMR0	TMR0	TMR0
Peripherals	Comparators(s)	_	_	_	2	2	2
	Internal Reference Voltage	_	_	_	Yes	Yes	Yes
	Interrupt Sources	3	3	3	4	4	4
	I/O Pins	13	13	13	13	13	13
	Voltage Range (Volts)	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0
Features	Brown-out Reset	_	_	_	Yes	Yes	Yes
	Packages	18-pin DIP, SOIC; 20-pin SSOP					

		PIC16C641 ⁽¹⁾	PIC16C642	PIC16C661 ⁽¹⁾	PIC16C662
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20
Memory	EPROM Program Memory (x14 words)	2K	4K	2K	4K
	Data Memory (bytes)	128	176	128	176
	Timer Module(s)	TMR0	TMR0	TMR0	TMR0
Peripherals	Comparators(s)	2	2	2	2
	Internal Reference Voltage	Yes	Yes	Yes	Yes
	Interrupt Sources	4	4	5	5
	I/O Pins	22	22	33	33
	Voltage Range (Volts)	3.0-6.0	3.0-6.0	3.0-6.0	3.0-6.0
Features	Brown-out Reset	Yes	Yes	Yes	Yes
	Packages	28-pin PDIP, SOIC, Windowed CDIP	28-pin PDIP, SOIC, Windowed CDIP	40-pin PDIP, Windowed CDIP; 44-pin PLCC, MQFP	40-pin PDIP, Windowed CDIP; 44-pin PLCC, MQFP

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C6XXX Family devices use serial programming with clock pin RB6 and data pin RB7.

E.5 PIC16C6X Family of Devices

		PIC16C62 ⁽¹⁾	PIC16C62A	PIC16CR62	PIC16C63	PIC16CR63
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20
	EPROM Program Memory (x14 words)	2K	2K	_	4K	_
Memory	ROM Program Memory (x14 words)	_	_	2K	_	4K
	Data Memory (bytes)	128	128	128	192	192
Peripherals	Timer Module(s)	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
	Capture/Compare/ PWM Module(s)	1	1	1	2	2
	Serial Port(s) (SPI/I ² C, USART)	SPI/I ² C	SPI/I ² C	SPI/I ² C	SPI/I ² C, USART	SPI/I ² C USART
	Parallel Slave Port	_	_	_	_	_
	Interrupt Sources	7	7	7	10	10
	I/O Pins	22	22	22	22	22
	Voltage Range (Volts)	3.0-6.0	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0
Features	In-Circuit Serial Programming	Yes	Yes	Yes	Yes	Yes
	Brown-out Reset	_	Yes	Yes	Yes	Yes
	Packages		28-pin SDIP, SOIC, SSOP	28-pin SDIP, SOIC, SSOP	28-pin SDIP, SOIC	28-pin SDIP, SOIC

		PIC16C64 ⁽¹⁾	PIC16C64A	PIC16CR64	PIC16C65 ⁽¹⁾	PIC16C65A	PIC16CR65
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20	20
	EPROM Program Memory (x14 words)	2K	2K	_	4K	4K	_
Memory	ROM Program Memory (x14 words)	_	_	2K	_	_	4K
	Data Memory (bytes)	128	128	128	192	192	192
	Timer Module(s)	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
Peripherals	Capture/Compare/ PWM Module(s)	1	1	1	2	2	2
	Serial Port(s) (SPI/I ² C, USART)	SPI/I ² C	SPI/I ² C	SPI/I ² C	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C USART
	Parallel Slave Port	Yes	Yes	Yes	Yes	Yes	Yes
	Interrupt Sources	8	8	8	11	11	11
	I/O Pins	33	33	33	33	33	33
	Voltage Range (Volts)	3.0-6.0	2.5-6.0	2.5-6.0	3.0-6.0	2.5-6.0	2.5-6.0
Features	In-Circuit Serial Programming	Yes	Yes	Yes	Yes	Yes	Yes
	Brown-out Reset	_	Yes	Yes	_	Yes	Yes
	Packages	44-pin PLCC,				40-pin DIP; 44-pin PLCC, MQFP, TQFP	40-pin DIP; 44-pin PLCC, MQFP, TQFP

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C6X Family devices use serial programming with clock pin RB6 and data pin RB7.

E.6 PIC16C7XX Family of Devices

		PIC16C710	PIC16C71	PIC16C711	PIC16C715	PIC16C72
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20
Memory	EPROM Program Memory (x14 words)	512	1K	1K	2K	2K
	Data Memory (bytes)	36	36	68	128	128
Peripherals	Timer Module(s)	TMR0	TMR0	TMR0	TMR0	TMR0, TMR1, TMR2
	Capture/Compare/ PWM Module(s)	_	_	_	_	1
	Serial Port(s) (SPI/I ² C, USART)	_	_	_	_	SPI/I ² C
	Parallel Slave Port	_	_	_	_	_
	A/D Converter (8-bit) Channels	4	4	4	4	5
	Interrupt Sources	4	4	4	4	8
	I/O Pins	13	13	13	13	22
	Voltage Range (Volts)	3.0-6.0	3.0-6.0	3.0-6.0	3.0-5.5	2.5-6.0
Features	In-Circuit Serial Programming	Yes	Yes	Yes	Yes	Yes
reatures	Brown-out Reset	Yes	_	Yes	Yes	Yes
	Packages	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	28-pin SDIP, SOIC, SSOP

		PIC16C73 ⁽¹⁾	PIC16C73A	PIC16C74 ⁽¹⁾	PIC16C74A
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20
Memory	EPROM Program Memory (x14 words)	4K	4K	4K	4K
	Data Memory (bytes)	192	192	192	192
	Timer Module(s)	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
Peripherals	Capture/Compare/ PWM Module(s)	2	2	2	2
	Serial Port(s) (SPI/I ² C, USART)	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART
	Parallel Slave Port	_	_	Yes	Yes
	A/D Converter (8-bit) Channels	5	5	8	8
	Interrupt Sources	11	11	12	12
	I/O Pins	22	22	33	33
	Voltage Range (Volts)	3.0-6.0	2.5-6.0	3.0-6.0	2.5-6.0
	In-Circuit Serial Programming	Yes	Yes	Yes	Yes
Features	Brown-out Reset	_	Yes	_	Yes
	Packages	28-pin SDIP, SOIC	28-pin SDIP, SOIC	40-pin DIP; 44-pin PLCC, MQFP	40-pin DIP; 44-pin PLCC, MQFP, TQFP

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C7X Family devices use serial programming with clock pin RB6 and data pin RB7.

E.7 PIC16C8X Family of Devices

		PIC16F83	PIC16CR83	PIC16C84 ⁽¹⁾	PIC16F84	PIC16CR84
Clock	Maximum Frequency of Operation (MHz)	10	10	10	10	10
	Flash Program Memory	512	_	_	1K	_
	EEPROM Program Memory	_	_	1K	_	_
Memory	ROM Program Memory	_	512	_	_	1K
	Data Memory (bytes)	36	36	36	68	68
	Data EEPROM (bytes)	64	64	64	64	64
Peripherals	Timer Module(s)	TMR0	TMR0	TMR0	TMR0	TMR0
	Interrupt Sources	4	4	4	4	4
	I/O Pins	13	13	13	13	13
Features	Voltage Range (Volts)	2.0-6.0	2.0-6.0	2.0-6.0	2.0-6.0	2.0-6.0
	Packages	18-pin DIP, SOIC	18-pin DIP, SOIC	18-pin DIP, SOIC	18-pin DIP, SOIC	18-pin DIP, SOIC

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C8X Family devices use serial programming with clock pin RB6 and data pin RB7.

E.8 PIC16C9XX Family Of Devices

		PIC16C923	PIC16C924
Clock	Maximum Frequency of Operation (MHz)	8	8
Momory	EPROM Program Memory	4K	4K
Memory	Data Memory (bytes)	176	176
	Timer Module(s)	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
	Capture/Compare/ PWM Module(s)	1	1
Peripherals	Serial Port(s) (SPI/I ² C, USART)	SPI/I ² C	SPI/I ² C
	Parallel Slave Port	_	_
	A/D Converter (8-bit) Channels	_	5
	LCD Module	4 Com, 32 Seg	4 Com, 32 Seg
	Interrupt Sources	8	9
	I/O Pins	25	25
	Input Pins	27	27
	Voltage Range (Volts)	3.0-6.0	3.0-6.0
Features	In-Circuit Serial Programming	Yes	Yes
	Brown-out Reset	_	_
	Packages	64-pin SDIP ⁽¹⁾ , TQFP; 68-pin PLCC, Die	64-pin SDIP ⁽¹⁾ , TQFP; 68-pin PLCC, Die

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16CXX Family devices use serial programming with clock pin RB6 and data pin RB7.

Note 1: Please contact your local Microchip representative for availability of this package.

E.9 PIC17CXX Family of Devices

		PIC17C42A	PIC17CR42	PIC17C43	PIC17CR43	PIC17C44
Clock	Maximum Frequency of Operation (MHz)	33	33	33	33	33
	EPROM Program Memory (words)	2K	_	4K	_	8K
Memory	ROM Program Memory (words)	_	2K	_	4K	_
	RAM Data Memory (bytes)	232	232	454	454	454
Peripherals	Timer Module(s)	TMR0, TMR1, TMR2, TMR3	TMR0, TMR1, TMR2, TMR3	TMR0, TMR1, TMR2, TMR3	TMR0, TMR1, TMR2, TMR3	TMR0, TMR1, TMR2, TMR3
	Captures/PWM Module(s)	2	2	2	2	2
	Serial Port(s) (USART)	Yes	Yes	Yes	Yes	Yes
	Hardware Multiply	Yes	Yes	Yes	Yes	Yes
	External Interrupts	Yes	Yes	Yes	Yes	Yes
	Interrupt Sources	11	11	11	11	11
	I/O Pins	33	33	33	33	33
Features	Voltage Range (Volts)	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0
	Number of Instructions	58	58	58	58	58
	Packages	44-pin PLCC,	40-pin DIP; 44-pin PLCC, MQFP, TQFP	44-pin PLCC,		

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability.

PIN COMPATIBILITY

Devices that have the same package type and VDD, Vss and $\overline{\text{MCLR}}$ pin locations are said to be pin compatible. This allows these different devices to operate in the same socket. Compatible devices may only requires minor software modification to allow proper operation in the application socket (ex., PIC16C56 and PIC16C61 devices). Not all devices in the same package size are pin compatible; for example, the PIC16C62 is compatible with the PIC16C63, but not the PIC16C55.

Pin compatibility does not mean that the devices offer the same features. As an example, the PIC16C54 is pin compatible with the PIC16C71, but does not have an A/D converter, weak pull-ups on PORTB, or interrupts.

TABLE E-1: PIN COMPATIBLE DEVICES

Pin Compatible Devices	Package
PIC12C508, PIC12C509	8-pin
PIC16C54, PIC16C54A, PIC16CR54A, PIC16C56, PIC16C58A, PIC16CR58A, PIC16C61, PIC16C554, PIC16C556, PIC16C558 PIC16C620, PIC16C621, PIC16C622 PIC16C641, PIC16C642, PIC16C661, PIC16C662 PIC16C710, PIC16C71, PIC16C711, PIC16C715 PIC16F83, PIC16CR83, PIC16F84A, PIC16CR84	18-pin 20-pin
PIC16C55, PIC16C57, PIC16CR57B	28-pin
PIC16CR62, PIC16C62A, PIC16C63, PIC16C72, PIC16C73A	28-pin
PIC16CR64, PIC16C64A, PIC16C65A, PIC16C74A	40-pin
PIC17CR42, PIC17C42A, PIC17C43, PIC17CR43, PIC17C44	40-pin
PIC16C923, PIC16C924	64/68-pin

C **INDEX** C Compiler (MP-C)147 Α Capture/Compare/PWM (CCP) Capture Mode......74 Absolute Maximum Ratings 149, 169, 185, 203, 219 CCP1......73 ALU9 CCP2......73 ALUSTA 132 Compare Mode......75 **Application Notes** Compare Mode Block Diagram75 AN552......49 Overview......59 AN556......45 Prescaler75 AN594 73 PWM Block Diagram76 Architectural Overview9 PWM Mode......76 PWM, Example Frequencies/Resolutions77 Baud Rate Formula97 Carry......9 Baud Rate Generator......97 CCP1CON23, 25, 27, 29 **Baud Rates** CCP2CON23, 25, 27, 29 Asynchronous Mode98 CCPR1H......23, 25, 27, 29 Error, Calculating97 CCPR1L23, 25, 27, 29 RX Pin Sampling, Timing Diagrams......100 CCPR2H.....23, 25, 27, 29 Sampling......100 CCPR2L23, 25, 27, 29 Clock Polarity, SPI Mode.....82 Clocking Scheme......17 **Block Diagrams** Code Examples Compare Mode75 Changing Between Capture Prescalers75 Crystal Oscillator, Ceramic Resonator...... 113 Changing Prescaler (T0 to WDT)65 External Brown-out Protection 123 Changing Prescaler (WDT to T0)65 External Parallel Resonant Crystal Circuit 115 Ensuring Interrupts are Globally Disabled124 I²C, Idle Mode......93 External Series Resonant Crystal Circuit.......115 I²C, Receive Mode93 I²C, Transmit Mode93 Indirect Addressing......46 On-chip Reset Circuit......116 Initializing PORTA47 Parallel Slave Port, PORTD-PORTE57 Initializing PORTB49 PIC16C61 10 Initializing PORTC51 PIC16C62 11 Loading the SSPBUF Register.....81 PIC16C62A......11 Reading a 16-bit Free-running Timer69 PIC16C63 12 Read-Modify-Write on an I/O Port56 PIC16C6411 Saving Status and W Registers.....127 PIC16C64A......11 Subroutine Call, Page0 to Page146 PIC16C6512 Code Protection......130 Computed GOTO45 PIC16CR62......11 Configuration Bits111 PIC16CR64......11 Configuration Word, Diagram112 PORTC51 Connecting Two Microcontrollers82, 84 PORTD (I/O Mode)53 PORTE (I/O Mode)54 **Data Memory** Organization20 RA3:RA0 pins47 RA4......47 Data Sheet Compatibility261 RB3:RB0 pins50 Modifications......261 What's New262 DC Characteristics......150, 170, 186, 204, 220 SPI Master/Slave Connection......82 SSP, I²C Mode......88 Development Support......145 SSP, SPI Mode......81 Development Tools......145 **Device Drawings** Timer0/WDT Prescaler64 18-Lead Ceramic CERDIP Dual In-line with Window (300 mil)250 18-Lead Plastic Dual In-line (300 mil).....245 Timer2......71 18-Lead Plastic Surface Mount (SOIC - Wide, 300 mil Body)248 28-Lead Ceramic CERDIP Dual In-line Watchdog Timer......128 BOR119 with Window (300 mil))251 28-Lead Ceramic Side Brazed Dual In-line with Window (300 mil)253

28-Lead Plastic Dual In-line (300 mil)	NOP140
28-Lead Plastic Surface Mount	OPTION
(SOIC - Wide, 300 mil Body)249	RETFIE
28-Lead Plastic Surface Mount	RETLW
(SSOP - 209 mil Body 5.30 mm)254	RETURN141
40-Lead Ceramic CERDIP Dual In-line	RLF141
with Window (600 mil)252	RRF141
40-Lead Plastic Dual In-line (600 mil)247	SLEEP141
44-Lead Plastic Leaded Chip Carrier (Square)255	SUBLW142
44-Lead Plastic Surface Mount (MQFP	SUBWF142
10x10 mm Body 1.6/0.15 mm Lead Form) 256, 257	SWAPF143
Digit Carry	TRIS
•	
Direct Addressing46	XORLW
E	XORWF 143
Electrical Characteristics149, 169, 185, 203, 219	Section131
	Summary Table 133
F	INTCON
Family of Devices	Inter-IC Bus84
PIC12C5XX	Interrupt on Change Feature
	Interrupts
PIC14000	·
PIC16C5X	Context Saving
PIC16CXXX266	Port RB49
PIC16C6X	RB0/INT 50, 126
PIC16C7XX268	RB0/INT Timing Diagram 126
PIC16C8X269	Timer0 61
PIC16C9XX270	Timer0, Timing62
PIC17CXX	Timing Diagram, Wake-up from SLEEP
FSR23, 24, 25, 26, 27, 28, 29, 30	TMR0
Fuzzy Logic Dev. System (<i>fuzzy</i> TECH [®] -MP)145, 147	Wake-up from SLEEP
ruzzy Logic Dev. System (1022y i Loi i -ivir) 143, 147	
G	Section
General Purpose Registers20	L
Graphs, PIC16C61	Loading the Program Counter45
-	
l .	M
I/O Ports, Section47	MPASM Assembler 145, 146
I ² C - See Synchronous Serial Port (SSP)	MP-C C Compiler147
ID Locations130	MPSIM Software Simulator
	*
In-circuit Serial Programming	0
INDF23, 25, 27, 29	One-Time-Programmable Devices
Indirect Addressing46	OPCODE
Instruction Cycle17	
Instruction Flow/Pipelining17	OPTION
Instruction Format	Oscillator Start-up Timer (OST)111, 117
Instruction Set	Oscillators
	Block Diagram, External Parallel
ADDLW	Resonant Crystal 115
ADDWF134	Capacitor Selection69
ANDLW 134	
ANDWF134	Configuration
AND WI	
BCF135	Configuration
	External Crystal Circuit115 HS113, 118
BCF135 BSF135	External Crystal Circuit
BCF	External Crystal Circuit
BCF 135 BSF 135 BTFSC 135 BTFSS 136	External Crystal Circuit
BCF 135 BSF 135 BTFSC 135 BTFSS 136 CALL 136	External Crystal Circuit
BCF 135 BSF 135 BTFSC 135 BTFSS 136 CALL 136 CLRF 136	External Crystal Circuit 113 HS 113 118 LP 113 118 RC, Block Diagram 115 RC, Section 115 XT 113
BCF 135 BSF 135 BTFSC 135 BTFSS 136 CALL 136 CLRF 136 CLRW 136	External Crystal Circuit
BCF 135 BSF 135 BTFSC 135 BTFSS 136 CALL 136 CLRF 136	External Crystal Circuit 113 HS 113 118 LP 113 118 RC, Block Diagram 115 RC, Section 115 XT 113
BCF 135 BSF 135 BTFSC 135 BTFSS 136 CALL 136 CLRF 136 CLRW 136	External Crystal Circuit
BCF 135 BSF 135 BTFSC 135 BTFSS 136 CALL 136 CLRF 136 CLRW 136 CLRWDT 137	External Crystal Circuit 115 HS 113, 118 LP 113, 118 RC, Block Diagram 115 RC, Section 115 XT 113 P Packaging Information 245
BCF 135 BSF 135 BTFSC 135 BTFSS 136 CALL 136 CLRF 136 CLRW 136 CLRWDT 137 COMF 137 DECF 137	External Crystal Circuit
BCF 135 BSF 135 BTFSC 135 BTFSS 136 CALL 136 CLRF 136 CLRW 136 CLRWDT 137 COMF 137 DECF 137 DECFSZ 137	External Crystal Circuit
BCF 135 BSF 135 BTFSC 135 BTFSS 136 CALL 136 CLRF 136 CLRW 136 CLRWDT 137 COMF 137 DECF 137 DECFSZ 137 GOTO 138	External Crystal Circuit
BCF 135 BSF 135 BTFSC 135 BTFSS 136 CALL 136 CLRF 136 CLRW 136 CLRWDT 137 COMF 137 DECF 137 DECFSZ 137 GOTO 138 INCF 138	External Crystal Circuit
BCF 135 BSF 135 BTFSC 135 BTFSS 136 CALL 136 CLRF 136 CLRW 136 CLRWDT 137 COMF 137 DECF 137 DECFSZ 137 GOTO 138 INCF 138 INCFSZ 138	External Crystal Circuit
BCF 135 BSF 135 BTFSC 135 BTFSS 136 CALL 136 CLRF 136 CLRW 136 CLRWDT 137 COMF 137 DECF 137 DECFSZ 137 GOTO 138 INCF 138 INCFSZ 138 IORLW 138	External Crystal Circuit
BCF 135 BSF 135 BTFSC 135 BTFSS 136 CALL 136 CLRF 136 CLRW 136 CLRWDT 137 COMF 137 DECF 137 DECFSZ 137 GOTO 138 INCF 138 INCFSZ 138	External Crystal Circuit
BCF 135 BSF 135 BTFSC 135 BTFSS 136 CALL 136 CLRF 136 CLRW 136 CLRWDT 137 COMF 137 DECF 137 DECFSZ 137 GOTO 138 INCF 138 INCFSZ 138 IORLW 138	External Crystal Circuit
BCF 135 BSF 135 BTFSC 135 BTFSS 136 CALL 136 CLRF 136 CLRW 136 CLRWDT 137 COMF 137 DECF 137 DECFSZ 137 GOTO 138 INCF 138 INCFSZ 138 IORLW 138 IORWF 139	External Crystal Circuit
BCF 135 BSF 135 BTFSC 135 BTFSS 136 CALL 136 CLRF 136 CLRW 136 CLRWDT 137 COMF 137 DECF 137 DECFSZ 137 GOTO 138 INCF 138 INCFSZ 138 IORLW 138 IORWF 139 MOVF 139	External Crystal Circuit

PICSTART® Low-Cost Development Systems		Program Memory	
PIE1		Map	
PIE2		Organization	
Pin Compatible Devices	272	Paging	
Pin Functions		Section	
MCLR/VPP		Programming while In-circuit	
OSC1/CLKIN	15	PUSH	45
OSC2/CLKOUT	15	Q	
PORTA	48	Quadrature Clocks	17
PORTB	50	Quick-Turnaround-Production	
PORTC	51	Quick-Turnaround-Production	/
PORTD	53	R	
PORTE		RBPU	49
RA4/T0CKI		RC Oscillator	
RA5/SS		RCREG	
RB0/INT		RCSTA	, , ,
RB6	,		23, 23, 21, 28
RB7		Registers	
		CCP1CON	
RC0/T1OSI/T1CKI		Diagram	
RC0/T10S0/T1CKI	,	Section	
RC1/T1OSI		Summary	23, 25, 27, 29
RC1/T1OSI/CCP2	,	CCP2CON	
RC1/T1OSO	51	Diagram	74
RC2/CCP1	15, 51, 52	Section	74
RC3/SCK/SCL	15, 51, 52	Summary	25, 29
RC4/SDI/SDA	15, 51, 52	CCPR1H	·
RC5/SDO	15, 51, 52	Summary	23, 25, 27, 29
RC6/TX/CK		CCPR1L	
RC7/RX/DT		Summary	23 25 27 20
RD7/PSP7:RD0/PSP0		CCPR2H	20, 20, 21, 20
RE0/RD		Summary	25 20
RE1/WR		•	20, Z8
		CCPR2L	05.00
RE2/CS		Summary	25, 29
SCK		FSR	
SDI		Indirect Addressing	
<u>SD</u> O		Summary	23, 25, 27, 29
SS	81–83	INDF	
VDD	16	Indirect Addressing	46
Vss	16	Summary	23, 25, 27, 29
PIR1		INTCON	
PIR2	23, 25, 27, 29	Diagram	34
POP	45	Section	33
POR		Summary	23, 25, 27, 29
Time-Out Sequence on Power-Up	122	OPTION	-, -, , -
POR		Diagram	32
Port RB Interrupt		Section	
PORTA		Summary	
PORTB		PCL	24, 20, 20, 30
			45
PORTC		Section	
PORTD		Summary	23, 25, 27, 29
PORTE	23, 25, 27, 29	PCLATH	
Ports		Section	
Bi-directional	56	Summary	23, 25, 27, 29
I/O Programming Considerations	56	PCON	
PORTA	15	Diagram	44
PORTB	15	Section	44
PORTC	15	Summary	
PORTD	16	PIE1	
PORTE		Diagram	37
Successive Operations on an I/O Por		Section	
Power-down Mode		Summary	
		•	24, 20, 20, 30
Power-on Reset (POR)		PIE2	40
Power-up Timer (PWRT)		Diagram	
PR2		Section	
Prescaler		Summary	26, 30
DDO MATE® Universal Programmer	1/15		

PIR1	TRISB
Diagram41	Section
Section38	Summary 24, 26, 28, 30
Summary23, 25, 27, 29	TRISC
PIR2	Section51
Diagram43	Summary
Section43	TRISD
Summary	Section
PORTA	Summary
Section47	TRISE
Summary	Diagram54
•	<u> </u>
PORTB 40	Section
Section	
Summary23, 25, 27, 29	TXREG
PORTC	Summary
Section51	TXSTA
Summary23, 25, 27, 29	Diagram 95
PORTD	Section95
Section53	Summary 30
Summary27, 29	W 9
PORTE	Special Function Registers,
Section54	Initialization Conditions
Summary27, 29	Special Function Registers, Reset Conditions 119
PR2	Special Function Register Summary 23, 25, 27, 29
Summary24, 26, 28, 30	File Maps 21
RCREG	Resets116
Summary25, 29	RP0 bit
RCSTA	S
Diagram96	
Summary25, 29	SCI - See Universal Synchronous Asynchronous Receiver
SPBRG	Transmitter (USART)
Summary26, 30	SCK 81
SSPBUF	SDI
Section81	SDO81
	Serial Programming130
Summary23, 25, 27, 29 SSPCON	Serial Programming, Block Diagram
	Serialized Quick-Turnaround-Production
Diagram80	SFR
Summary23, 25, 27, 29	SFR As Source/Destination
SSPSR	SLEEP Mode
Section81	Software Simulator (MPSIM)
SSPSTAT	SPBRG
Diagram79	Special Features, Section
Section79	
Summary24, 26, 28, 30	Special Function Registers
STATUS	SPI Mode
Diagram31	<u>SS</u>
Section31	SSPADD 24, 26, 28, 30
Summary23, 25, 27, 29	SSPBUF 23, 25, 27, 29
T1CON	SSPCON
Diagram 67	SSPSTAT 24, 26, 28, 30
Section67	Stack
Summary23, 25, 27, 29	STATUS23, 24, 25, 26, 27, 28, 29, 30
T2CON	Status Bits
Diagram71	Status Bits During Various Resets
Section71	Switching Prescalers
Summary	Synchronous Serial Port (SSP)
•	Block Diagram, SPI Mode81
TMR0	I ² C
Summary23, 25, 27, 29	7-bit, 10-bit Address Format85
TMR1H	Addressing85
Summary23, 25, 27, 29	· · · · · · · · · · · · · · · · · · ·
TMR1L	Arbitration
Summary23, 25, 27, 29	Block Diagram
TMR2	Clock Synchronization
Summary23, 25, 27, 29	Combined Master-Receiver/Transmitter
TRISA	Sequence
Section47	Data Transfer85
Summary24, 26, 28, 30	Initiating and Terminating Data Transfer 84

Master Mode		Watchdog Timer	157
Master-Receiver Sequence	86	PIC16C62	
Master-Transmitter Sequence	86	Capture/Compare/PWM	179
Multi-Master	87	CLKOUT and I/O	176
Multi-Master Mode	92	External Clock	
Operation	88	I ² C Bus Data	183
Slave Mode	89	I ² C Bus Start/Stop Bits	182
Slave Mode, Addressing	89	Oscillator Start-up Timer	
Slave Mode, Reception	90	Power-up Timer	177
Slave Mode, Transmission	91	Reset	
Terminology, Table	84	SPI Mode	181
Timing Diagram, Slave Mode Reception	90	Timer0	178
Timing Diagram, Transmission, 7-bit	91	Timer1	178
Transfer Acknowledge	85	Watchdog Timer	177
I ² C Section	84	PIC16C62A	
Section	79	Brown-out Reset	195
SPI Master/Slave Diagram	82	Capture/Compare/PWM	197
SPI Mode		CLKOUT and I/O	
т		External Clock	192
I 00 05 0	7 00	I ² C Bus Data	201
T1CON23, 25, 2		I ² C Bus Start/Stop Bits	200
T2CON23, 25, 2		Oscillator Start-up Timer	
Time-out Sequence	118	Power-up Timer	
Timer Modules		Reset	
Overview, all	59	SPI Mode	199
Timer0		Timer0	
Block Diagram		Timer1	196
Counter Mode		Watchdog Timer	
External Clock		PIC16C63	
Interrupt		Brown-out Reset	227
Overview		Capture/Compare/PWM	
Prescaler		CLKOUT and I/O	
Section	61	External Clock	
Timer Mode		I ² C Bus Data	
Timing Diagram	61	I ² C Bus Start/Stop Bits	
TMR0 register	61	Oscillator Start-up Timer	
Timer1		Power-up Timer	
Block Diagram	68	Reset	
Capacitor Selection	69	SPI Mode	
Counter Mode, Asynchronous	69	Timer0	
Counter Mode, Synchronous	68	Timer1	
External Clock	69	USART Synchronous Receive (Master/Slave)	
Oscillator	69	Watchdog Timer	
Overview	59	PIC16C64	∠∠1
Prescaler		Capture/Compare/PWM	170
Section	67	CLKOUT and I/O	
Timer Mode			
TMR1 Register Pair	67	External Clock	
Timer2		I ² C Bus Start/Stop Bits	
Block Diagram	71		
Overview	59	Oscillator Start-up Timer	
Postscaler	71	Parallel Slave Port	
Prescaler	71	Power-up Timer	
Timing Diagrams		Reset	
Brown-out Reset	117	SPI Mode	
I ² C Slave Reception, 7-bit		Timer0	
I ² C, Clock Synchronization		Timer1	
I ² C, Data Transfer	85	Watchdog Timer	1//
I ² C, Multi-Master Arbitration		PIC16C64A	
I ² C, Slave Mode Transmission - 7-bit		Brown-out Reset	
PIC16C61	0 1	Capture/Compare/PWM	197
CLKOUT and I/O	156	CLKOUT and I/O	
External Clock		External Clock	
Oscillator Start-up Timer		I ² C Bus Data	
		I ² C Bus Start/Stop Bits	200
Power-up Timer		Oscillator Start-up Timer	195
Reset Timer0		Parallel Slave Port	
	150	r didilor blavo i britishishishishishishishishishishishishishi	

Reset195	USART, Asynchronous Reception 103
SPI Mode	USART, Synchronous Tranmission
Timer0	Wake-up from SLEEP Through Interrupts
Timer1196	TMR023, 25, 27, 29
Watchdog Timer195	TMR1H 23, 25, 27, 29
PIC16C65	TMR1L23, 25, 27, 29
Capture/Compare/PWM213	TMR223, 25, 27, 29
CLKOUT and I/O210	TO119
External Clock209	TRISA24, 26, 28, 30
I ² C Bus Data217	TRISB 24, 26, 28, 30
I ² C Bus Start/Stop Bits216	TRISC
Oscillator Start-up Timer211	TRISD
Parallel Slave Port214	TRISE
Reset211	TXREG
SPI Mode215	TXSTA
Timer0212	
Timer1212	U
USART Synchronous Receive (Master/Slave) . 218	Universal Synchronous Asynchronous Receiver Transmitte
Watchdog Timer	(USART)
PIC16C65A	Asynchronous Mode
Brown-out Reset227	Setting Up Transmission 102
Capture/Compare/PWM	Timing Diagram, Master Transmission 102
	Transmitter 10
CLKOUT and I/O	Asynchronous Receiver
External Clock	Setting Up Reception104
I ² C Bus Data	Timing Diagram
I ² C Bus Start/Stop Bits	Asynchronous Receiver Mode
Oscillator Start-up Timer	Block Diagram103
Parallel Slave Port230	Section
Power-up Timer227	Section95
Reset227	Synchronous Master Mode
SPI Mode231	Reception107
Timer0228	Section
Timer1228	
USART Synchronous Receive (Master/Slave) . 234	Setting Up Reception
Watchdog Timer227	Setting Up Transmission
PIC16CR62	Timing Diagram, Reception
Capture/Compare/PWM197	Timing Diagram, Transmission
CLKOUT and I/O194	Transmission
External Clock192	Synchronous Slave Mode
I ² C Bus Data201	Reception
I ² C Bus Start/Stop Bits200	Section
Oscillator Start-up Timer195	Setting Up Reception
Power-up Timer195	Setting Up Transmission
Reset195	Transmit
SPI Mode199	Transmit Block Diagram
Timer0196	UV Erasable Devices7
Timer1196	W
Watchdog Timer195	Wake-up from Sleep129
PIC16CR64	Wake-up on Key Depression
Capture/Compare/PWM197	Watchdog Timer (WDT)
CLKOUT and I/O194	Block Diagram128
External Clock192	Period
I ² C Bus Data201	Programming Considerations
I ² C Bus Start/Stop Bits200	Section
Oscillator Start-up Timer	Weak Internal Pull-ups
Parallel Slave Port	·
Power-up Timer	X
Reset195	XT 118
SPI Mode	Z
Timer0	-
Timer1	Zero bit
Watchdog Timer	
Power-up Timer	
RB0/INT Interrupt	
RX Pin Sampling	
SPI Mode, Master/Slave Mode, No SS Control	
SPI Mode, Slave Mode With SS Control83	

LIST OF	EXAMPLES	Figure 4-20:	PIR2 Register (Address 0Dh)	43
F	Leatmenting Displies Floor	Figure 4-21:	PCON Register for PIC16C62/64/65	4.4
•	Instruction Pipeline Flow	Figure 4 22	(Address 8Eh)	44
Example 4-1:	Call of a Subroutine in Page 1 from	Figure 4-22:	PCON Register for PIC16C62A/R62/63/64A/R64/65A	
Evennle 4 2	Page 0		(Address 8Eh)	11
Example 4-2:	Indirect Addressing	Figure 4-23:	Loading of PC in Different Situations	
	Initializing PORTA	Figure 4-24:	Direct/Indirect Addressing	
	Initializing PORTS	•	<u> </u>	40
	Initializing PORTC	Figure 5-1:	Block Diagram of the RA3:RA0 Pins and the RA5 Pin	17
Example 5-4:	Read-Modify-Write Instructions on an	Figure 5 2:	Block Diagram of the RA4/T0CKI Pin	
E	I/O Port	Figure 5-2:		41
•	Changing Prescaler (Timer0→WDT)65	Figure 5-3:	Block Diagram of the	40
•	Changing Prescaler (WDT→Timer0)65	F:	RB7:RB4 Pins For PIC16C61/62/64/65	49
	Reading a 16-bit Free-running Timer 69	Figure 5-4:	Block Diagram of the	
•	Changing Between Capture Prescalers 75		RB7:RB4 Pins For PIC16C62A/63/	
Example 10-2:	PWM Period and Duty Cycle	Figure 5 5.	64A/65A	50
	Calculation	Figure 5-5:	Block Diagram of the	
Example 11-1:	Loading the SSPBUF (SSPSR)	F:	RB3:RB0 Pins	50
	Register 81	Figure 5-6:	PORTC Block Diagram (Peripheral	
•	Calculating Baud Rate Error97		Output Override)	51
Example 13-1:	Saving Status and W Registers in RAM	Figure 5-7:	PORTD Block Diagram	
	(PIC16C61)127		(In I/O Port Mode)	53
Example 13-2:	Saving Status and W Registers in RAM	Figure 5-8:	PORTE Block Diagram	
	(PIC16C62/62A/R62/63/64/64A/R64/		(In I/O Port Mode)	
	65/65A)127	Figure 5-9:	TRISE Register (Address 89h)	54
LICTOF	FIGURES	Figure 5-10:	Successive I/O Operation	56
LIST OF	FIGURES	Figure 5-11:	PORTD and PORTE as a Parallel	
Figure 3-1:	DIC16C61 Plank Dingram		Slave Port	57
•	PIC16C61 Block Diagram	Figure 7-1:	Timer0 Block Diagram	61
Figure 3-2:	PIC16C62/62A/R62/64/64A/R64	Figure 7-2:	Timer0 Timing: Internal Clock/	
F: 0.0	Block Diagram	•	No Prescaler	61
Figure 3-3:	PIC16C63/65/65A Block Diagram	Figure 7-3:	Timer0 Timing: Internal Clock/	
Figure 3-4:	Clock/Instruction Cycle	o .	Prescale 1:2	62
Figure 4-1:	PIC16C61 Program Memory Map	Figure 7-4:	Timer0 Interrupt Timing	
	and Stack19	Figure 7-5:	Timer0 Timing With External Clock	
Figure 4-2:	PIC16C62/62A/R62/64/64A/	Figure 7-6:	Block Diagram of the Timer0/	
	R64 Program Memory Map and Stack 19	90.0 . 0.	WDT Prescaler	64
Figure 4-3:	PIC16C63/65/65A Program Memory	Figure 8-1:	T1CON: Timer1 Control Register	
	Map and Stack19	rigaro o ri	(Address 10h)	67
Figure 4-4:	PIC16C61 Register File Map20	Figure 8-2:	Timer1 Block Diagram	
Figure 4-5:	PIC16C62/62A/R62/64/64A/	Figure 9-1:	Timer2 Block Diagram	
	R64 Register File Map21	Figure 9-1:	T2CON: Timer2 Control Register	/ 1
Figure 4-6:	PIC16C63/65/65A Register File Map21	rigure 3-2.	(Address 12h)	71
Figure 4-7:	STATUS Register (Address 03h, 83h)31	Figure 10 1:	CCP1CON Register (Address 17h)/	/ 1
Figure 4-8:	OPTION Register (Address 81h)32	Figure 10-1:	<u> </u>	71
Figure 4-9:	INTCON Register for PIC16C61	Figure 10 Or	CCP2CON Register (Address 1Dh)	/4
•	(Address 0Bh, 8Bh)33	Figure 10-2:	Capture Mode Operation	7.
Figure 4-10:	INTCON Register for	F: 40.0	Block Diagram	/4
Ū	PIC16C62/62A/R62/63/64/64A/R64/	Figure 10-3:	Compare Mode Operation	
	65/65A (Address 0Bh, 8Bh)		Block Diagram	
Figure 4-11:	PIE1 Register for PIC16C62/62A/R62	Figure 10-4:	Simplified PWM Block Diagram	
	(Address 8Ch)35	Figure 10-5:	PWM Output	76
Figure 4-12:	PIE1 Register for PIC16C63	Figure 11-1:	SSPSTAT: Sync Serial Port Status	
1 iguio 1 12.	(Address 8Ch)36		Register (Address 94h)	79
Figure 4-13:	PIE1 Register for PIC16C64/64A/R64	Figure 11-2:	SSPCON: Sync Serial Port Control	
riguic + 13.	(Address 8Ch)36		Register (Address 14h)	
Figure 4-14:	PIE1 Register for PIC16C65/65A	Figure 11-3:	SSP Block Diagram (SPI Mode)	81
riguic + 14.	(Address 8Ch)37	Figure 11-4:	SPI Master/Slave Connection	82
Figure 4.15:	,	Figure 11-5:	SPI Mode Timing (Master Mode or	
Figure 4-15:	PIR1 Register for PIC16C62/62A/R62		Slave Mode w/o SS Control)	83
Figure 4.40	(Address 0Ch)	Figure 11-6:	SPI Mode Timing (Slave Mode with	
Figure 4-16:	PIR1 Register for PIC16C63	-	SS Control)	83
Figure 4.47	(Address 0Ch)	Figure 11-7:	Start and Stop Conditions	
Figure 4-17:	PIR1 Register for PIC16C64/64A/R64	Figure 11-8:	7-bit Address Format	
	(Address 0Ch)	Figure 11-9:	I ² C 10-bit Address Format	
Figure 4-18:	PIR1 Register for PIC16C65/65A	Figure 11-10:	Slave-Receiver Acknowledge	
	(Address 0Ch)41		Data Transfer Wait State	
Figure 4-19:	PIE2 Register (Address 8Dh)42	9 111.		55

Figure 11-12:	Master-Transmitter Sequence86	Figure 13-21:	Watchdog Timer Block Diagram	128
Figure 11-13:	Master-Receiver Sequence86	-	Summary of Watchdog Timer	
-	Combined Format86	•	Registers	128
	Multi-master Arbitration (Two Masters)87		Wake-up from Sleep Through	120
				120
	Clock Synchronization		Interrupt	130
	SSP Block Diagram (I ² C Mode)88	Figure 13-24:	Typical In-circuit Serial Programming	
Figure 11-18:	I ² C Waveforms for Reception		Connection	130
	(7-Bit Address)90	Figure 14-1:	General Format for Instructions	132
Figure 11-19:	I ² C Waveforms for Transmission	Figure 16-1:	Load Conditions for Device Timing	
· ·	(7-bit Address)91	_	Specifications	154
Figure 11-20:	Operation of the I ² C Module in	Figure 16-2:	External Clock Timing	
1 iguio 11 20.	IDLE_MODE, RCV_MODE or	Figure 16-3:	CLKOUT and I/O Timing	
		ū		150
F: 40.4	XMIT_MODE	Figure 16-4:	Reset, Watchdog Timer, Oscillator	
Figure 12-1:	TXSTA: Transmit Status and		Start-up Timer and Power-up	
	Control Register (Address 98h)95		Timer Timing	
Figure 12-2:	RCSTA: Receive Status and	Figure 16-5:	Timer0 Clock Timings	158
	Control Register (Address 18h)96	Figure 17-1:	Typical RC Oscillator Frequency	
Figure 12-3:	RX Pin Sampling Scheme (BRGH = 0) 100	_	vs. Temperature	159
Figure 12-4:	RX Pin Sampling Scheme (BRGH = 1) 100		Typical RC Oscillator Frequency	
Figure 12-5:	RX Pin Sampling Scheme (BRGH = 1) 100	-	vs. VDD	160
Figure 12-6:	USART Transmit Block Diagram101		Typical RC Oscillator Frequency	100
•	_	_		160
Figure 12-7:	Asynchronous Master Transmission 102		vs. VDD	160
Figure 12-8:	Asynchronous Master Transmission	Figure 17-4:	Typical RC Oscillator Frequency	
	(Back to Back)102		vs. VDD	160
Figure 12-9:	USART Receive Block Diagram103		Typical IPD vs. VDD Watchdog Timer	
Figure 12-10:	Asynchronous Reception103		Disabled 25°C	160
Figure 12-11:			Typical IPD vs. VDD Watchdog Timer	
0	Synchronous Transmission	3	Enabled 25°C	161
gao	(Through TXEN)106	Figure 17-7:	Maximum IPD vs. VDD Watchdog	
Eiguro 12 12:	Synchronous Reception	rigate 17 7.	Disabled	161
rigule 12-13.		Figure 17 0.		101
F: 40.4	(Master Mode, SREN)		Maximum IPD vs. VDD Watchdog	400
Figure 13-1:	Configuration Word for PIC16C61111		Enabled*	162
Figure 13-2:	Configuration Word for	Figure 17-9:	Vтн (Input Threshold Voltage) of	
	PIC16C62/64/65112		I/O Pins vs. VDD	162
Figure 13-3:	Configuration Word for	Figure 17-10:	VIH, VIL of MCLR, TOCKI and OSC1	
	PIC16C62A/R62/63/64A/R64/65A112		(in RC Mode) vs. VDD	163
Figure 13-4:	Crystal/Ceramic Resonator Operation	Figure 17-11:	Vтн (Input Threshold Voltage) of	
3	(HS, XT or LP OSC Configuration) 113		OSC1 Input (in XT, HS, and LP Modes)	
Figure 13-5:	External Clock Input Operation		vs. VDD	
riguic 15-5.	·	Figure 17 12:	Typical IDD vs. Frequency	100
F: 42 C.	(HS, XT or LP OSC Configuration)	Figure 17-12.	• • • • • • • • • • • • • • • • • • • •	404
Figure 13-6:	External Parallel Resonant Crystal	=	(External Clock, 25°C)	164
	Oscillator Circuit115	Figure 17-13:	Maximum IDD vs. Frequency	
Figure 13-7:	External Series Resonant Crystal		(External Clock, -40° to +85°C)	164
	Oscillator Circuit115	Figure 17-14:	Maximum IDD vs. Frequency	
Figure 13-8:	RC Oscillator Mode115		(External Clock, -55° to +125°C)	165
Figure 13-9:	Simplified Block Diagram of On-chip		WDT Timer Time-out Period vs. VDD	
Ü	Reset Circuit116		Transconductance (gm) of	
Figure 13-10:	Brown-out Situations117		HS Oscillator vs. VDD	165
•				100
rigule 15-11.	Time-out Sequence on Power-up		Transconductance (gm) of	166
F: 40.40	(MCLR not Tied to VDD): Case 1122		LP Oscillator vs. VDD	100
Figure 13-12:	Time-out Sequence on Power-up		Transconductance (gm) of	
	(MCLR Not Tied To VDD): Case 2122		XT Oscillator vs. VDD	
Figure 13-13:	Time-out Sequence on Power-up	Figure 17-19:	IOH vs. VOH, VDD = 3V	166
	(MCLR Tied to VDD)122	Figure 17-20:	IOH vs. VOH, VDD = 5V	166
Figure 13-14:	External Power-on Reset Circuit	Figure 17-21:	IOL vs. VOL, VDD = 3V	167
· ·	(For Slow VDD Power-up) 123			
Figure 13-15	External Brown-out Protection	Figure 18-1:	Load Conditions for Device Timing	
riguic 13-13.	Circuit 1	-	Specifications	17/
Figure 12 16.				
rigure 13-16:	External Brown-out Protection	Figure 18-2:	External Clock Timing	
	Circuit 2	_	CLKOUT and I/O Timing	176
•	Interrupt Logic for PIC16C61125	Figure 18-4:	Reset, Watchdog Timer, Oscillator	
Figure 13-18:	Interrupt Logic for		Start-up Timer and Power-up	
	PIC16C62/62A/R62/63125		Timer Timing	
Figure 13-19:	Interrupt Logic for	Figure 18-5:	Timer0 and Timer1 Clock Timings	178
-	PIC16C64/64A/R64/65/65A125	-	Capture/Compare/PWM Timings	
Figure 13-20	INT Pin Interrupt Timing126	•	(CCP1)	179
9 10 20.	120		\·/	

Figure 18-7:	Parallel Slave Port Timing (PIC16C64)	180	Figure 22-4:	Maximum IPD vs. VDD (WDT Enabled, RC Mode)23
Figure 18-8:	SPI Mode Timing		Figure 22-5:	Typical RC Oscillator Frequency
Figure 18-9:	I ² C Bus Start/Stop Bits Timing		o .	vs. VDD23
Figure 18-10:	I ² C Bus Data Timing		Figure 22-6:	Typical RC Oscillator Frequency
Figure 19-1:	Load Conditions for Device			vs. VDD23
-	Timing Specifications	191	Figure 22-7:	Typical RC Oscillator Frequency
Figure 19-2:	External Clock Timing	192		vs. VDD23
Figure 19-3:	CLKOUT and I/O Timing		Figure 22-8:	Typical IPD vs. VDD Brown-out Detect
Figure 19-4:	Reset, Watchdog Timer, Oscillator			Enabled (RC Mode)23
	Start-up Timer and Power-up Timer		Figure 22-9:	Maximum IPD vs. VDD Brown-out Detect
	Timing	195		Enabled (85°C to -40°C, RC Mode)23
Figure 19-5:	Brown-out Reset Timing		Figure 22-10:	Typical IPD vs. Timer1 Enabled (32 kHz,
Figure 19-6:	Timer0 and Timer1 Clock Timings	196		$RC0/RC1 = 33 pF/33 pF, RC Mode) \dots 23$
Figure 19-7:	Capture/Compare/PWM Timings		Figure 22-11:	Maximum IPD vs. Timer1 Enabled
	(CCP1)	197		(32 kHz, RC0/RC1 = 33 pF/33 pF,
Figure 19-8:	Parallel Slave Port Timing	100	F: 00.40	85°C to -40°C, RC Mode)23
Fig. 40.0	(PIC16C64A/R64)		Figure 22-12:	Typical IDD vs. Frequency
Figure 19-9:	SPI Mode Timing		Figure 00.40.	(RC Mode @ 22 pF, 25°C)23
Figure 19-10:	I ² C Bus Start/Stop Bits Timing		Figure 22-13:	Maximum IDD vs. Frequency
Figure 19-11: Figure 20-1:	I ² C Bus Data Timing Load Conditions for Device Timing	201	Figure 22 14:	(RC Mode @ 22 pF, -40°C to 85°°C)23 Typical IDD vs. Frequency
rigule 20-1.	Specifications	208	rigule 22-14.	(RC Mode @ 100 pF, 25°C)23
Figure 20-2:	External Clock Timing		Figure 22 15:	Maximum IDD vs. Frequency
Figure 20-2:	CLKOUT and I/O Timing		Figure 22-15.	(RC Mode @ 100 pF, -40°C to 85°C)23
Figure 20-4:	Reset, Watchdog Timer, Oscillator	210	Figure 22-16:	Typical IDD vs. Frequency
1 iguic 20 4.	Start-up Timer and Power-up Timer		1 iguio 22 10.	(RC Mode @ 300 pF, 25°C)24
	Timing	211	Figure 22-17:	Maximum IDD vs. Frequency
Figure 20-5:	Timer0 and Timer1 Clock Timings		940	(RC Mode @ 300 pF, -40°C to 85°C)24
Figure 20-6:	Capture/Compare/PWM Timings		Figure 22-18:	Typical IDD vs. Capacitance @
3	(CCP1 and CCP2)	213	9	500 kHz (RC Mode)24
Figure 20-7:	Parallel Slave Port Timing		Figure 22-19:	Transconductance(gm) of
Figure 20-8:	SPI Mode Timing			HS Oscillator vs. VDD24
Figure 20-9:	I ² C Bus Start/Stop Bits Timing	216	Figure 22-20:	Transconductance(gm) of
Figure 20-10:	I ² C Bus Data Timing	217		LP Oscillator vs. VDD24
Figure 20-11:	USART Synchronous Transmission (Master/Slave) Timing	218	Figure 22-21:	Transconductance(gm) of XT Oscillator vs. VDD24
Figure 20-12	USART Synchronous Receive	210	Figure 22-22	Typical XTAL Startup Time vs.
1 iguic 20 12.	(Master/Slave) Timing	218	riguio ZZ ZZ.	VDD (LP Mode, 25°C)24
Figure 21-1:	Load Conditions for Device Timing	2.0	Figure 22-23:	Typical XTAL Startup Time vs.
	Specifications	224	g = = = = .	VDD (HS Mode, 25°C)24
Figure 21-2:	External Clock Timing		Figure 22-24:	Typical XTAL Startup Time vs.
Figure 21-3:	CLKOUT and I/O Timing		· ·	VDD (XT Mode, 25°C)24
Figure 21-4:	Reset, Watchdog Timer, Oscillator		Figure 22-25:	Typical Idd vs. Frequency
	Start-up Timer and Power-up Timer			(LP Mode, 25°C)24
	Timing	227	Figure 22-26:	Maximum IDD vs. Frequency
Figure 21-5:	Brown-out Reset Timing	227		(LP Mode, 85°C to -40°C)24
Figure 21-6:	Timer0 and Timer1 Clock Timings	228	Figure 22-27:	Typical IDD vs. Frequency
Figure 21-7:	Capture/Compare/PWM Timings			(XT Mode, 25°C)24
	(CCP1 and CCP2)	229	Figure 22-28:	Maximum IDD vs. Frequency
Figure 21-8:	Parallel Slave Port Timing		=:	(XT Mode, -40°C to 85°C)24
Fig. 04.0	(PIC16C65A)		Figure 22-29:	Typical IDD vs. Frequency
Figure 21-9:	SPI Mode Timing		F: 00 00	(HS Mode, 25°C)24
	I ² C Bus Start/Stop Bits Timing		Figure 22-30:	Maximum IDD vs. Frequency
	I ² C Bus Data Timing USART Synchronous Transmission	233		(HS Mode, -40°C to 85°C)24
rigule 21-12.	(Master/Slave) Timing	234		
Figure 21-13	USART Synchronous Receive	204		
. iguio 21-10.	(Master/Slave) Timing	234		
Figure 22-1:	Typical IPD vs. VDD			
g ··	(WDT Disabled, RC Mode)	235		
Figure 22-2:	Maximum IPD vs. VDD			
J	(WDT Disabled, RC Mode)	235		
Figure 22-3:	Typical IPD vs. VDD @ 25°C			
	(WDT Enabled, RC Mode)	236		

LIST OF TABLES			Table 12-5:	Baud Rates for Asynchronous Mode (BRGH = 1)	99	
Table 1-1:	PIC16C6X Family of Devices	6	Table 12-6:	Registers Associated with	00	
Table 3-1:	PIC16C61 Pinout Description			Asynchronous Transmission	102	
Table 3-2:	PIC16C62/62A/R62/63 Pinout		Table 12-7:	Registers Associated with		
	Description	14		Asynchronous Reception	104	
Table 3-3:	PIC16C64/64A/R64/65/65A Pinout		Table 12-8:	Registers Associated with		
	Description	15		Synchronous Master Transmission	106	
Table 4-1:	Special Function Registers for the		Table 12-9:	Registers Associated with		
	PIC16C61	22		Synchronous Master Reception	107	
Table 4-2:	Special Function Registers for the		Table 12-10:	Registers Associated with		
	PIC16C62/62A/R62	23		Synchronous Slave Transmission	110	
Table 4-3:	Special Function Registers for the		Table 12-11:	Registers Associated with		
	PIC16C63	25		Synchronous Slave Reception	110	
Table 4-4:	Special Function Registers for the		Table 13-1:	Ceramic Resonators PIC16C61		
	PIC16C64/64A/R64	27	Table 13-2:	Capacitor Selection for Crystal		
Table 4-5:	Special Function Registers for the			Oscillator for PIC16C61	114	
	PIC16C65/65A	29	Table 13-3:	Ceramic Resonators		
Table 5-1:	PORTA Functions			PIC16C62/62A/R62/63/		
Table 5-2:	Summary of Registers Associated			64/64A/R64/65/65A	114	
	with PORTA	48	Table 13-4:	Capacitor Selection for Crystal		
Table 5-3:	PORTB Functions	50		Oscillator for PIC16C62/62A/R62/63/		
Table 5-4:	Summary of Registers Associated			64/64A/R64/65/65A	114	
	with PORTB	50	Table 13-5:	Time-out in Various Situations,		
Table 5-5:	PORTC Functions for PIC16C62/64	51		PIC16C61/62/64/65	118	
Table 5-6:	PORTC Functions for		Table 13-6:	Time-out in Various Situations,		
	PIC16C62A/R62/64A/R64	52		PIC16C62A/R62/63/64A/R64/65A	118	
Table 5-7:	PORTC Functions for		Table 13-7:	Status Bits and Their Significance,		
	PIC16C63/65/65A	52		PIC16C61	118	
Table 5-8:	Summary of Registers Associated		Table 13-8:	Status Bits and Their Significance,		
	with PORTC	52		PIC16C62/64/65	118	
Table 5-9:	PORTD Functions		Table 13-9:	Status Bits and Their Significance for		
Table 5-10:	Summary of Registers Associated			PIC16C62A/R62/63/64A/R64/65A	119	
	with PORTD	53	Table 13-10:	Reset Condition for Special Registers		
Table 5-11:	PORTE Functions	55		on PIC16C61/62/64/65	119	
Table 5-12:	Summary of Registers Associated		Table 13-11:	Reset Condition for Special Registers		
	with PORTE	55		on PIC16C62A/R62/63/64A/R64/65A		
Table 5-13:	Registers Associated with Parallel		Table 13-12:	Initialization Conditions for all		
	Slave Port			Registers		
Table 7-1:	Registers Associated with Timer0	65	Table 14-1:	Opcode Field Descriptions		
Table 8-1:	Capacitor Selection for the		Table 14-2:	PIC16CXX Instruction Set		
	Timer1 Oscillator	69	Table 15-1:	Development Tools From Microchip	148	
Table 8-2:	Registers Associated with Timer1		Table 16-1:	Cross Reference of Device Specs		
	as a Timer/Counter	70		for Oscillator Configurations and		
Table 9-1:	Registers Associated with Timer2			Frequencies of Operation		
	as a Timer/Counter	72		(Commercial Devices)		
Table 10-1:	CCP Mode - Timer Resource		Table 16-2:	External Clock Timing Requirements	155	
Table 10-2:	Interaction of Two CCP Modules	73	Table 16-3:	CLKOUT and I/O Timing		
Table 10-3:	Example PWM Frequencies and			Requirements	156	
	Resolutions at 20 MHz	77	Table 16-4:	Reset, Watchdog Timer,		
Table 10-4:	Registers Associated with Timer1,			Oscillator Start-up Timer and	455	
	Capture and Compare	77		Power-up Timer Requirements		
Table 10-5:	Registers Associated with PWM		Table 16-5:	Timer0 Clock Requirements		
	and Timer2	78	Table 17-1:	RC Oscillator Frequencies		
Table 11-1:	Registers Associated with		Table 17-2:	Input Capacitance*	167	
	SPI Operation		Table 18-1:	Cross Reference of Device Specs		
Table 11-2:	I ² C Bus Terminology			for Oscillator Configurations and		
Table 11-3:	Data Transfer Received Byte Actions	89		Frequencies of Operation	400	
Table 11-4:	Registers Associated with I ² C		Table 40.0	(Commercial Devices)		
	Operation		Table 18-2:	External Clock Timing Requirements	1/5	
Table 12-1:	Baud Rate Formula	97	Table 18-3:	CLKOUT and I/O Timing	470	
Table 12-2:	Registers Associated with	0-	T-bl- 40 4	Requirements	1/6	
-	Baud Rate Generator		Table 18-4:	Reset, Watchdog Timer, Oscillator		
Table 12-3:	Baud Rates for Synchronous Mode	98		Start-up Timer and Power-up Timer	477	
Table 12-4:	Baud Rates for Asynchronous Mode	00		Requirements	1//	
	(BRGH = 0)	98				

Table 40 F	Time and an el Time and Claude
Table 18-5:	Timer0 and Timer1 Clock
T-1-1- 40 0	Requirements
Table 18-6:	Capture/Compare/PWM
T-1-1- 40 7	Requirements (CCP1)
Table 18-7:	Parallel Slave Port Requirements
Table 10 0.	(PIC16C64)
Table 18-8:	SPI Mode Requirements
Table 18-9:	I ² C Bus Start/Stop Bits Requirements 182
Table 18-10:	I ² C Bus Data Requirements
Table 19-1:	Cross Reference of Device Specs
	for Oscillator Configurations and
	Frequencies of Operation
T 11 40 0	(Commercial Devices)
Table 19-2:	External Clock Timing Requirements 192
Table 19-3:	CLKOUT and I/O Timing
	Requirements
Table 19-4:	Reset, Watchdog Timer, Oscillator
	Start-up Timer, Power-up Timer, and
	Brown-out Reset Requirements195
Table 19-5:	Timer0 and Timer1 Clock
	Requirements
Table 19-6:	Capture/Compare/PWM Requirements
	(CCP1)197
Table 19-7:	Parallel Slave Port Requirements
	(PIC16C64A/R64)198
Table 19-8:	SPI Mode Requirements199
Table 19-9:	I ² C Bus Start/Stop Bits Requirements 200
Table 19-10:	I ² C Bus Data Requirements
Table 20-1:	Cross Reference of Device Specs
	for Oscillator Configurations and
	Frequencies of Operation
	(Commercial Devices)203
Table 20-2:	External Clock Timing Requirements 209
Table 20-3:	CLKOUT and I/O Timing
	Requirements210
Table 20-4:	Reset, Watchdog Timer, Oscillator
	Start-up Timer and Power-up Timer
	Requirements211
Table 20-5:	Timer0 and Timer1 Clock
	Requirements212
Table 20-6:	Capture/Compare/PWM Requirements
	(CCP1 and CCP2)213
Table 20-7:	Parallel Slave Port Requirements214
Table 20-8:	SPI Mode Requirements215
Table 20-9:	I ² C Bus Start/Stop Bits Requirements 216
Table 20-10:	i ² C Bus Data Requirements217
Table 20-11:	USART Synchronous Transmission
	Requirements218
Table 20-12:	USART Synchronous Receive
	Requirements218
Table 21-1:	Cross Reference of Device Specs
	for Oscillator Configurations and
	Frequencies of Operation
	(Commercial Devices)219
Table 21-2:	External Clock Timing Requirements 225
Table 21-3:	CLKOUT and I/O Timing
	Requirements
Table 21-4:	Reset, Watchdog Timer, Oscillator
	Start-up Timer, Power-up Timer, and
	Brown-out Reset Requirements227
Table 21-5:	Timer0 and Timer1 Clock
2.1 0.	Requirements
Table 21-6:	Capture/Compare/PWM Requirements
. 4510 21-0.	(CCP1 and CCP2)229
Table 21-7:	Parallel Slave Port Requirements
. 3010 21 7.	(PIC16C65A)230
	1. 10.100007 17

Table 21-8:	SPI Mode Requirements	231
Table 21-9:	I ² C Bus Start/Stop Bits Requirements	232
Table 21-10:	I ² C Bus Data Requirements	233
Table 21-11:	USART Synchronous Transmission	
	Requirements	234
Table 21-12:	USART Synchronous Receive	
	Requirements	234
Table 22-1:	RC Oscillator Frequencies	241
Table 22-2:	Capacitor Selection for Crystal	
	Oscillators	242

NOTES:

ON-LINE SUPPORT

Microchip provides two methods of on-line support. These are the Microchip BBS and the Microchip World Wide Web (WWW) site.

Use Microchip's Bulletin Board Service (BBS) to get current information and help about Microchip products. Microchip provides the BBS communication channel for you to use in extending your technical staff with microcontroller and memory experts.

To provide you with the most responsive service possible, the Microchip systems team monitors the BBS, posts the latest component data and software tool updates, provides technical help and embedded systems insights, and discusses how Microchip products provide project solutions.

The web site, like the BBS, is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp.mchip.com/biz/mchip

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked Questions
- · Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products

Connecting to the Microchip BBS

Connect worldwide to the Microchip BBS using either the Internet or the CompuServe® communications network.

Internet:

You can telnet or ftp to the Microchip BBS at the address:

mchipbbs.microchip.com

CompuServe Communications Network:

When using the BBS via the Compuserve Network, in most cases, a local call is your only expense. The Microchip BBS connection does not use CompuServe membership services, therefore you do not need CompuServe membership to join Microchip's BBS. There is no charge for connecting to the Microchip BBS.

The procedure to connect will vary slightly from country to country. Please check with your local CompuServe agent for details if you have a problem. CompuServe service allow multiple users various baud rates depending on the local point of access.

The following connect procedure applies in most locations.

- Set your modem to 8-bit, No parity, and One stop (8N1). This is not the normal CompuServe setting which is 7E1.
- 2. Dial your local CompuServe access number.
- Depress the <Enter> key and a garbage string will appear because CompuServe is expecting a 7E1 setting.
- Type +, depress the <Enter> key and "Host Name:" will appear.
- Type MCHIPBBS, depress the <Enter> key and you will be connected to the Microchip BBS.

In the United States, to find the CompuServe phone number closest to you, set your modern to 7E1 and dial (800) 848-4480 for 300-2400 baud or (800) 331-7166 for 9600-14400 baud connection. After the system responds with "Host Name:", type NETWORK, depress the <Enter> key and follow CompuServe's directions.

For voice information (or calling from overseas), you may call (614) 723-1550 for your local CompuServe number.

Microchip regularly uses the Microchip BBS to distribute technical information, application notes, source code, errata sheets, bug reports, and interim patches for Microchip systems software products. For each SIG, a moderator monitors, scans, and approves or disapproves files submitted to the SIG. No executable files are accepted from the user community in general to limit the spread of computer viruses.

Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits. The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and 1-602-786-7302 for the rest of the world.

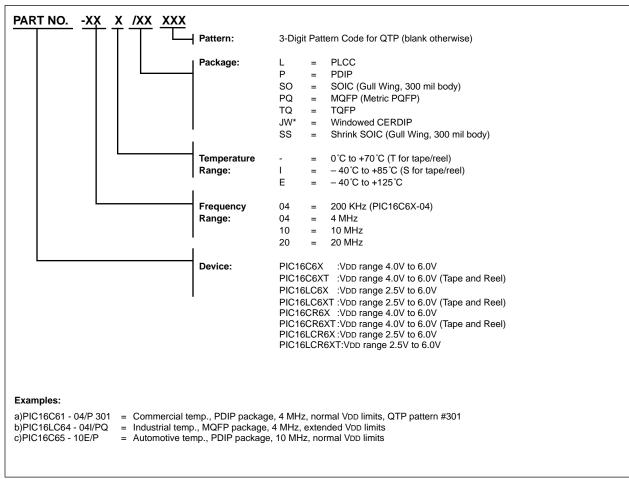
960513

Trademarks: The Microchip name, logo, PIC, PICSTART, PICMASTER and PRO MATE are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. *Flex*ROM, MPLAB and *fuzzy*LAB, are trademarks and SQTP is a service mark of Microchip in the U.S.A.

fuzzyTECH is a registered trademark of Inform Software Corporation. IBM, IBM PC-AT are registered trademarks of International Business Machines Corp. Pentium is a trademark of Intel Corporation. Windows is a trademark and MS-DOS, Microsoft Windows are registered trademarks of Microsoft Corporation. CompuServe is a registered trademark of CompuServe Incorporated.

All other trademarks mentioned herein are the property of their respective companies.

READER RESPONSE


It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	roominati i abiloationo managor	Total Pages Sent
RE:		
Fror	m: Name	
	•	FAX: ()
App	olication (optional):	
Wou	uld you like a reply?YN	
Dev	vice: PIC16C6X Literature I	Number: DS30234C_1
	estions:	
1.	What are the best features of this document	?
2.	How does this document meet your hardwar	e and software development needs?
3.	Do you find the organization of this data she	et easy to follow? If not, why?
4.	What additions to the data sheet do you thin	
5.	What deletions from the data sheet could be	e made without affecting the overall usefulness?
6	Is there any incorrect or misleading informat	ion (what and where)?
0.	is there any incorrect or misleading informat	on (what and where):
7.	How would you improve this document?	
8.	How would you improve our software, system	ns, and silicon products?

PIC16C6X Product Identification System

To order or to obtain information, e.g., on pricing or delivery, please use the listed part numbers, and refer to the factory or the listed sales offices.

^{*} JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type (including LC devices).

Sales and Support

Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office.
- 2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277
- The Microchip's Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.

© 1996 Microchip Technology Inc.

NOTES:

D	\cap 1	6	\frown	C	V
	IC1	יס	احا	O	Λ

NOTES:

WORLDWIDE SALES & SERVICE

AMERICAS

Corporate Office

Microchip Technology Inc. 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 602 786-7200 Fax: 602 786-7277 Technical Support: 602 786-7627 Web: http://www.microchip.com

Atlanta

Microchip Technology Inc. 500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770 640-0034 Fax: 770 640-0307

Boston

Microchip Technology Inc. 5 Mount Royal Avenue Marlborough, MA 01752 Tel: 508 480-9990 Fax: 508 480-8575

Chicago

Microchip Technology Inc. 333 Pierce Road, Suite 180 Itasca, IL 60143

Tel: 708 285-0071 Fax: 708 285-0075

Dallas

Microchip Technology Inc. 14651 Dallas Parkway, Suite 816 Dallas, TX 75240-8809 Tel: 972 991-7177 Fax: 972 991-8588

Dayton

Microchip Technology Inc. Suite 150 Two Prestige Place Miamisburg, OH 45342 Tel: 513 291-1654 Fax: 513 291-9175

Los Angeles

Microchip Technology Inc. 18201 Von Karman, Suite 1090 Irvine, CA 92612

Tel: 714 263-1888 Fax: 714 263-1338

New York

Microchip Technology Inc. 150 Motor Parkway, Suite 416 Hauppauge, NY 11788 Tel: 516 273-5305 Fax: 516 273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408 436-7950 Fax: 408 436-7955

Toronto

Microchip Technology Inc. 5925 Airport Road, Suite 200 Mississauga, Ontario L4V 1W1, Canada

Tel: 905 405-6279 Fax: 905 405-6253

ASIA/PACIFIC

Hong Kong

Microchip Technology RM 3801B, Tower Two Metroplaza 223 Hing Fong Road Kwai Fong, N.T. Hong Kong Tel: 852 2 401 1200 Fax: 852 2 401 3431

Microchip Technology No. 6, Legacy, Convent Road Bangalore 560 025 India Tel: 91 80 529 4846 Fax: 91 80 559 9840

Microchip Technology 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku, Seoul, Korea

Tel: 82 2 554 7200 Fax: 82 2 558 5934

Shanghai

Microchip Technology Unit 406 of Shanghai Golden Bridge Bldg. 2077 Yan'an Road West, Hongiao District Shanghai, Peoples Republic of China Tel: 86 21 6275 5700 Fax: 86 21 6275 5060

Singapore

Microchip Technology 200 Middle Road #10-03 Prime Centre Singapore 188980 Tel: 65 334 8870 Fax: 65 334 8850

Taiwan, R.O.C

Microchip Technology 10F-1C 207 Tung Hua North Road Taipei, Taiwan, ROC

Tel: 886 2 717 7175 Fax: 886 2 545 0139

EUROPE

United Kingdom

Arizona Microchip Technology Ltd. Unit 6, The Courtyard Meadow Bank, Furlong Road Bourne End, Buckinghamshire SL8 5AJ Tel: 44 1628 850303 Fax: 44 1628 850178

Arizona Microchip Technology SARL Zone Industrielle de la Bonde 2 Rue du Buisson aux Fraises 91300 Massy - France Tel: 33 1 69 53 63 20 Fax: 33 1 69 30 90 79

Germany

Arizona Microchip Technology GmbH Gustav-Heinemann-Ring 125 D-81739 Muenchen, Germany Tel: 49 89 627 144 0 Fax: 49 89 627 144 44

Arizona Microchip Technology SRL Centro Direzionale Colleone Pas Taurus 1 Viale Colleoni 1 20041 Agrate Brianza Milan Italy

Tel: 39 39 6899939 Fax: 39 39 689 9883

JAPAN

Microchip Technology Intl. Inc. Benex S-1 6F 3-18-20, Shin Yokohama Kohoku-Ku, Yokohama Kanagawa 222 Japan Tel: 81 45 471 6166 Fax: 81 45 471 6122

11/7/96

All rights reserved. © 1996, Microchip Technology Incorporated, USA.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.