PT4711—48V

45-W Dual-Output Isolated DC/DC Converter

Features

- Input Voltage: 36 V to 75 V
- Dual Output (15 V / 15 V) (Independently Regulated!)
- Separate Output Returns
- (Accommodates $\pm 15 V \text{ or } \pm 30 V$)
- Internal Power-Up Sequencing
- Flexible On/Off ControlOutput Current Limit
- Eise d Energy and On anothe
- Fixed Frequency Operation

- Over-Temperature Shutdown
- Under-Voltage Lockout
- 1500 VDC Isolation
- Space-Saving Solderable Case 1.2 sq. in. PCB Area (suffix N)
- Surface Mount Option
- Safety Approvals (Pending): UL 60950, cUL 60950

Description

The PT4711 Excalibur™ power module is a 45-watt rated DC/DC converter that produces two regulated output supply voltages from a standard (-48 V) telecom central office supply.

Both of the outputs from this module are truly independent. Each is separately regulated and has its own negative return. This allows the flexibility of configuring the output for up to three voltage options. This includes a complimentary dual ± 15 -V, or a single ± 30 -V or -30-V output.

The PT4711 incorporates many features to simplify system integration. These include a flexible On/Off enable control, input under-voltage lock-out, and over-temperature protection. All outputs are short-circuit protected, and internally sequenced for simultaneous power-up and powerdown.

The module is packaged in a space-saving solderable copper case, requires no heat sink, and can occupy as little as 1.2 in² of PCB area.

Ordering Information

PT4711 = 15 V / 15 V

PT Series Suffix (PT1234x)

Case/Pin Configuration	Order Suffix	Package Code
Vertical	N	(ENM)
Horizontal	А	(ENN)
SMD	C	(ENP)
Defense athe applied	le parleane rede	du anni in a fan

(Reference the applicable package code drawing for the dimensions and PC layout)

Typical Application

Co₁, Co₂: Rec Cin: Op EN1 & EN2 pins: See

Recommended 150 μF Optional 47 μF electrolytic See On/Off Enable Logic

45-W Dual-Output Isolated DC/DC Converter

Pin Configuration

Pin	Function	Pin	Function
1	+Vin	8	Pin Not Present
2	Vin	9	Pin Not Present
3	EN 2	10	Pin Not Present
4	EN 1	11	Pin Not Present
5	Do Not Connect	12	Pin Not Present
6	Do Not Connect	13	Pin Not Present
7	Do Not Connect	14	+Vo ₁

Note: Shaded functions indicates those pins that are at primary-side potential. All other pins are referenced to the secondary.

Pin	Descriptions	

+Vin: The positive input supply for the module with respect to $-V_{in}$. When powering the module from a -48-V telecom central office supply, this input is connected to the primary system ground.

-Vin: The negative input supply for the module, and the 0-VDC reference for the EN 1, and EN 2 inputs. When powering the module from a +48-V supply, this input is connected to the input source return.

EN 1: The negative logic input that activates the module output. This pin must be connected to $-V_{in}$ to enable the module's outputs. A high impedance disables the module's outputs.

EN 2: The positive logic input that activates the module output. If not used, this pin should be left open circuit. Connecting this input to $-V_{in}$ disables the module's outputs.

+Vo 1: This is the positive DC output voltage with respect to $-Vo_1$. The output voltage produced across $\pm Vo_1$ is electrically isolated from $\pm V_{in}$ and independently regulated from that produced at $\pm Vo_2$. If the $+Vo_1$ node is connected to the secondary ground, a negative output voltage will be produced at $-Vo_1$.

Pin	Function
15	Not Connected
16	-Vo ₁
17	Vo ₁ Adjust
18	+Vo ₂
19	Not Connected
20	-Vo ₂
21	Vo ₂ Adjust

On/Off Enable Logic

Pin 3	Pin 4	Output Status
×	1	Off
1	0	On
0	×	Off

Notes:

Logic 1 =Open collector Logic 0 = –Vin (pin 2) potential For positive Enable function, connect pin 4

to pin 2 and use pin 3. For negative Enable function, leave pin 3 open and use pin 4.

-Vo 1: The negative output supply voltage with respect to +Vo₁. If this node is connected to the secondary ground, a positive voltage is produced at +Vo₁.

+Vo 2: This is the positive DC output voltage with respect to $-Vo_2$. The output voltage produced across $\pm Vo_2$ is electrically isolated from $\pm V_{in}$ and independently regulated from that produced at $\pm Vo_1$. If $+Vo_2$ node is connected to the secondary ground, a negative output voltage will be produced at $-Vo_2$.

-Vo 2: The negative output supply voltage with respect to $+Vo_2$. If this node is connected to the secondary ground, a positive voltage is produced at $+Vo_2$.

\pmVo₁ Adjust: Using a single resistor, this pin allows the output voltage produced at \pm Vo₁ to be adjusted higher or lower by up to 10%. If not used this pin should be left open circuit.

 \pm Vo₂ Adjust: Using a single resistor, this pin allows the output voltage produced at \pm Vo₂ to be adjusted higher or lower by up to 10%. If not used this pin should be left open circuit.

45-W Dual-Output Isolated DC/DC Converter

				PT4711		
Characteristics	Symbols	Conditions	Min	Тур	Typ Max	
Output Current	Io ₁ , Io ₂	Both outputs	0	-	1.5	А
Input Voltage Range	Vin	Continuous Surge (1 minute)	36	Ξ.	75 80	V
Set-Point Voltage	Vo_1, Vo_2		14.55	15.0	15.45	V
Temperature Variation	$\Delta \text{Reg}_{\text{temp}}$	$-40^{\circ}C \leq T_a \leq +85^{\circ}C, I_o = I_o min \qquad Vo_1, Vo_2$	_	±0.5	—	$%V_{o}$
Line Regulation	ΔReg _{line}	All outputs, Over Vin range	—	±0.05	±0.25	$%V_{o}$
Load Regulation	ΔRegload	All outputs, 0≤I₀≤I₀max	_	±0.2	±0.5	%Vo
Cross Regulation	$\Delta \text{Reg}_{\text{cross}}$	Io ₁ =Io ₁ max, $0 \le Io_2 \le Io_2max$ Io ₂ =Io ₂ max, $0 \le Io_1 \le Io_1max$	—	±10	—	mV
Total Output Voltage Variation	ΔV_o tot	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	14.25	-	15.75	V
Efficiency	η		—	86		%
V _o Ripple (pk-pk)	V_n	Measured from each output to COM, Vo ₁ , Vo ₂ 0 to 20 MHz bandwidth	—	15	—	mVpp
Transient Response	${\mathop{\rm Vos}}^{t_{tr}}$	0.1 A/µs load step, 50% to 75% I₀max V₀ over/undershoot	_	100 2	_	uSec %Vo
Output Adjust Range	Vo _x adj	Each Vo adjusted independently	—	±10	_	$%V_{o}$
Current Limit Threshold	IoLIM	Shutdown, auto restart Vo ₁ , Vo ₂	_	2.5		А
Switching Frequency	f_{s}	Over Vin and Io ranges	550	600	650	kHz
Under Voltage Lockout	V _{on} V _{off}	V _{in} increasing V _{in} decreasing	_	34 32		V
Enable Control (pins 3 & 4) High-Level Input Voltage Low-Level Input Voltage Low-Level Input Current	V _{IH} V _{IL} I _{IL}	Referenced to $-V_{in}$ (pin 2) Pin connected to $-V_{in}$ (pin 2)	4 0.2		Open (1) 0.8 (1)	V mA
1		* · · ·		5	20	
Standby Input Current	I _{in} standby	pins 3 & 4 open circuit			20	mA
Internal Input Capacitance	C _{int}			1	_	μF
External Output Capacitance	Co	Each output to COM Vo ₁ , Vo ₂	0	-	500	μF
Primary/Secondary Isolation	V iso C iso R iso		$\frac{1500}{10}$	2,200		V pF MΩ
Secondary Working Voltage	ΔV _{sec}	Between any two output pins	_	_	35 (2)	V
Operating Temperature Range	Ta	Over V _{in} Range	-40	_	85 (3)	°C
Solder Reflow Temperature	T _{reflow}	Surface temperature of module pins or case	_	-	215 (4)	°C
Storage Temperature	Ts		-40	-	125	°C
Mechanical Shock	3	Per Mil-STD-883D, Method 2002.3 1 msec, ½ Sine, mounted	_	500	_	G's
Mechanical Vibration		Mil-STD-883D, Method 2007.2 Suffix A 20-2000 Hz Suffix N, C	_	15 (5) 20 (5)	_	G's
Weight		Vertical/Horizontal	_	50	_	grams
ShutdownTemperature	OTP			115	125	°C
Flammability		Meets UL 94V-O				

PT4711 Electrical Specifications (Unless otherwise stated, the operating conditions are:- $T_a = 25^{\circ}$ C, $V_{in} = 48$ V, and $I_o = I_o$ max)

Notes: (1) The Enable inputs (pins 3 & 4) have internal pull-ups. Leaving pin 3 open-circuit and connecting pin 4 to $-V_{in}$ allows the the converter to operate when input power is applied. The maximum open-circuit voltage is 5 V.

(2) The maximum voltage that may exist between any two output pins.

(3) See SOA curves or consult factory for appropriate derating.

(4) During solder reflow of SMD package version, do not elevate the module case, pins, or internal component temperatures above a peak of 215°C. For further guidance refer to the application note, "Reflow Soldering Requirements for Plug-in Power Surface Mount Products," (SLTA051).

(5) Only the case pins on through-bole pin configurations (N & A) must be soldered. For more information see the applicable package outline drawing.

PT4711-48V

Performance Characteristics; V_{in} =48 V (See Note A)

Cross Regulation; Vo₁ vs |lo₂|

|lo₂| (A)

PT4711 Safe Operating Area (SOA) (See Note B) (All outputs proportionally loaded from 0 to 100 % of full load)

Note A: All Characteristic data in the above graphs has been developed from actual products tested at 25°C. This data is considered typical data for the ISR. **Note B:** SOA curves represent operating conditions at which the internal components are at or below the manufacturer's maximum rated operating temperatures.

Operating Features of the PT4711 Dual-Output DC/DC Converter

Over-Current Protection

Each of the two outputs from the PT4711 DC/DC converter incorporates protection against an output load fault. When a fault impedance is applied to one output, the module initially limits the output current of that output to approximately 150% of the maximum current rating. If the fault persists for more than 20 ms the converter shuts down, forcing the voltage at both regulated outputs to simultaneously fall to zero. Following shutdown the converter periodically attempts to recover by executing a soft-start power-up. The converter will contine in a cycle of successive shutdowns and restarts until the load fault is removed.

Over-Temperature Protection

The PT4711 DC/DC converter has an internal temperature sensor, which monitors the temperature of the module's internal components. If the sensed temperature exceeds a nominal 115°C, the converter will shut down. The converter will automatically restart when the sensed temperature returns to about 100°C.

Under-Voltage Lock-Out

The Under-Voltage Lock-Out (UVLO) circuit prevents operation of the converter whenever the input voltage to the module is insufficient to maintain output regulation. The UVLO has approximately 2 V of hysterisis. This is to prevent oscillation with a slowly changing input voltage. Below the UVLO threshold the module is off and the enable control inputs, EN1 and EN2 are inoperative.

Primary-Secondary Isolation

The PT4711 DC/DC converter incorporates electrical isolation between the input terminals (primary) and the output terminals (secondary). All converters are production tested to a withstand voltage of 1500 VDC. The isolation complies with UL/cUL 60950 and EN60950, and the requirements for operational isolation. This allows the converter to be configured for either a positive or negative input voltage source.

The regulation control circuitry for these modules is located on the secondary (output) side of the isolation barrier. Control signals are passed between the primary and secondary sides of the converter. The data sheet 'Pin Descriptions' and 'Pin-Out Information' provides guidance as to which reference (primary or secondary) that must be used for each of the external control pin.

Input Current Limiting

The converter is not internally fused. For safety and overall system protection, the maximum input current to the converter must be limited. Active or passive current limiting can be used. Passive current limiting can be a fast acting fuse. A 125-V fuse, rated no more than 5 A, is recommended. Active current limiting can be implemented with a current limited "Hot-Swap" controller.

Output Voltage Configurations

Both outputs from the PT4711 DC/DC converter are independently regulated and isolated from each other. This allows flexibility to how the output voltages may be configured (up to the maximum allowed working voltage between the two outputs; see specification table). Figure 1-1 shows the most common ways that the outputs of the converter may be configured. They include $\pm V_0$ (Fig. 1-1a), $V_0(a)/V_0(b)$ (Fig. 1-1b), and $2 \times V_0$ (Fig. 1-1c).

Figure 1-1; PT4711 Output Voltage Configurations

Using the On/Off Enable Controls on the PT4711 Dual-Output DC/DC Converter

The PT4711 is a dual-output DC/DC converter incorporates two output enable controls. EN1 (pin 4) is the *Negative Enable* input, and EN2 (pin 3) is the *Positive Enable* input. Both inputs are electrically referenced to $-V_{in}$ (pin 2) on the primary or input side of the converter. A pull-up resistor is not required, but may be added if desired. Voltages of up to 70 V can be safely applied to the either of the *Enable* pins.

Automatic (UVLO) Power-Up

Connecting EN1 (pin 4) to $-V_{in}$ (pin 2) and leaving EN2 (pin 3) open-circuit configures the converter for automatic power up. (See data sheet "Typical Application"). The converter control circuitry incorporates an "Under Voltage Lockout" (UVLO) function, which disables the converter until the minimum specified input voltage is present at $\pm V_{in}$. (See data sheet Specifications). The UVLO circuitry ensures a clean transition during power-up and power-down, allowing the converter to tolerate a slow-rising input voltage. For most applications EN1 and EN2, can be configured for automatic power-up.

Positive Output Enable (Negative Inhibit)

To configure the converter for a positive enable function, connect EN1 (pin 4) to $-V_{in}$ (pin 2), and apply the system On/Off control signal to EN2 (pin 3). In this configuration, a low-level input voltage (- V_{in} potential) applied to pin 3 disables the converter outputs. Figure 1 is an example of this configuration.

Figure 1; Positive Enable Configuration

Negative Output Enable (Positive Inhibit)

To configure the converter for a negative enable function, EN2 (pin 3) is left open circuit, and the system On/Off control signal is applied to EN1 (pin 4). A low-level input voltage (-V_{in} potential) must then be applied to

pin 4 in order to enable the outputs of the converter. An example of this configuration is detailed in Figure 2. <u>Note</u>: The converter will only produce an output voltage if a valid input voltage is applied to $\pm V_{in}$.

Figure 2; Negative Enable Configuration

On/Off Output Voltage Sequencing

Both outputs from the PT4711 converter are internally sequenced to power up in unison. Figure 3-3 shows the output waveforms after the module's output has been enabled. The converter produces a fully regulated output within 75 ms. The waveforms were measured with the output voltages configured per Figure 1-1a (for ± 15 -V output). A constant current load of 1.5 A was applied to both outputs, with an input source of 48 VDC.

PT4711

Adjusting the Output Voltages of the PT4711 Dual-Output DC/DC Converters

The PT4711 dual-output DC/DC converter produces two independently regulated output voltages. The magnitude of each output may be trimmed higher or lower than the nominal set-point by up to 10%. The adjustment method uses a single external resistor. ¹ The value of the resistor determines the magnitude of adjustment, and the location of the resistor determines the direction of adjustment (increase or decrease). The resistor values can be calculated using a formula (see below). Alternatively the resistor value may be selected directly from the values given in Table 2-2. The placement of each resistor is as follows.

Adjust Up: To increase the magnitude of the output voltage, add a resistor R_1 between the appropriate $Vo_x Adj$ ('Vo₁ Adj' or 'Vo₂ Adj') and the respective $-Vo_x$ voltage rail. See Figure 2-1(a) and Table 2-1 for the resistor placement and pin connections.

Figure 2-1a

Notes:

- 1. Use only a single 1% (or better) tolerance resistor in either the R_1 or (R_2) location to adjust a specific output. Place the resistor as close to the ISR as possible.
- 2. Never connect capacitors to any of the 'Vo_x Adj' pins. Any capacitance added to these control pins will affect the stability of the respective regulated output.

Adjust Down: To decrease the magnitude of the output voltage, add a resistor (R₂), between the appropriate V_{0x} *Adj* (Vo₁ Adj or Vo₂ Adj,) and the respective + V_{0x} voltage rail. See Figure 2-1(b) and Table 2-1 for the resistor placement and pin connections.

	To Adju Conne	-	To Adjust Down Connect (R ₂)		
	from	to	from	to	
	Vo _x Adj	–Vo _x	Vo _x Adj	+Vo _x	
Vo ₁	17	16	17	14	
Vo ₂	21	20	21	18	

Calculation of Resistor Adjust Values

The adjust resistor value may also be calculated using an equation. Note that the equation for R_1 [Adjust Up] is different to that for (R_2) [Adjust Down].

$$R_1 [Adjust Up] = \frac{35.75}{(V_a - V_o)} - 20 \quad k\Omega$$

(R₂) [Adjust Down] =
$$\frac{14.3 (V_a - 2.5)}{(V_o - V_a)} - 20 k\Omega$$

Where:
$$V_o$$
 = Original output voltage (Vo_x)
 V_a = Adjusted output voltage (Va_x)

___ PT4711

Table 2-2 ADJUSTMENT RESISTOR VALUES FOR Vo. & Vo.

dj. Resistor		R ₁ /(R ₂)
6 Adjust	V _a (req'd)	
-10%	13.50 V	(84.9) kΩ
- 9%	13.65 V	(98.1) kΩ
- 8%	$13.80\mathrm{V}$	(115) kΩ
- 7%	13.95 V	(136) kΩ
- 6%	$14.10\mathrm{V}$	(164) kΩ
- 5%	14.25 V	(204) kΩ
- 4%	$14.40\mathrm{V}$	(264) kΩ
- 3%	14.55 V	(363) kΩ
- 2%	$14.70\mathrm{V}$	(562) kΩ
- 1%	14.85 V	(1.16) MΩ
0%	$15.00\mathrm{V}$	
+ 1%	15.15 V	218 kΩ
+ 2%	15.30 V	99.2 kΩ
+ 3%	15.45 V	59.4 kΩ
+ 4%	$15.60\mathrm{V}$	39.6 kΩ
+ 5%	15.75 V	27.7 kΩ
+ 6%	$15.90\mathrm{V}$	19.7 kΩ
+ 7%	16.05 V	14.0 kΩ
+ 8%	$16.20\mathrm{V}$	9.8 kΩ
+ 9%	16.35 V	6.5 kΩ
+10%	$16.50\mathrm{V}$	3.8 kΩ

V TEXAS INSTRUMENTS

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Samples
	(1)		Drawing			(2)		(3)	(Requires Login)
PT4711A	OBSOLETE	SIP MODULE	ENN	21		TBD	Call TI	Call TI	
PT4711C	LIFEBUY	SIP MODULE	ENP	21	8	TBD	Call TI	Level-3-215C-168HRS	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

MECHANICAL DATA

MMSI071 - OCTOBER 2001

- B. This drawing is subject to change without notice.
- C. 2 place decimals are $\pm 0.030 (\pm 0.76 \text{ mm})$.
- D. 3 place decimals are $\pm 0.010 (\pm 0.25 \text{ mm})$.
- E. Recommended mechanical keep out area.
- F. Electrical pin length mounted on printed circuit board, from seating plane to pin end.
- G. The case is electrically uncommitted. The recommended connection is to secondary ground.
- H. No copper, power or signal traces in this area.
- J. Some pins may not be present, see product specifications.

MECHANICAL DATA

MMSI072 - OCTOBER 2001

- I. Power pin connections should utilize two or more vias per input, ground and output pin.
- J. No copper, power or signal traces in this area.
- K. Some pins may not be present, see product specifications.

D. 3 place decimals are $\pm 0.010 (\pm 0.25 \text{ mm})$.

to mechanical pins.

E. Recommended mechanical keep out area.

F. Vias are recommended to improve copper adhesion.

G. Solder mask openings to copper island for solder joints

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated