INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC02 August 1986

HILIPS

GENERAL DESCRIPTION

The SAF1135 is a data line decoder, designed in CMOS technology, which operates in conjunction with the data line processor (SAA5235) to form a data line receiver system.

This system receives and decodes binary data that is transmitted in line 16 of every first field of a standard television signal. The decoded information is accessed via the built-in l²C bus interface. This information can be used to program a video tape recorder to start and stop the recording of a television program at the correct time, regardless of a delay or extension in the transmission time of the required television program.

Valid Video Programming System (VPS) data is transmitted in line 16 only. There is no VPS information in line 329.

The data transmission is biphase modulated and the bit transfer rate is 2,5 Mbit/s.

Features

- Field selection
- Line 16 decoding
- Start code check
- Biphase check
- Storage of data line information
- Generation of data reset pulse
- I²C bus transmitter

QUICK REFERENCE DATA

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage (pin 14)	V _{DD}	4,5	5,0	5,5	V
Supply current (pin 14)	I _{DD}	-	1	-	mA
Bit transfer rate at input DLD (pin 8)	BR _{DLD}	-	2,5	-	Mbits/s
Clock frequency at input DLCL (pin 11)	f _{DLCL}	-	5	-	MHz
Storage temperature range	T _{stg}	-65	-	+150	°C
Operating ambient temperature range	T _{amb}	0	-	70	°C

PACKAGE OUTLINES

14-lead DIL; plastic (SOT27); SOT27-1; 1997 January 07.

SAF1135

2

SAF1135

FUNCTIONAL DESCRIPTION

The SAF1135 is designed to receive and decode Video Tape Recorder (VTR) control information which is transmitted in line 16 of every first field of a standard television signal. The following description refers to the block diagram Fig.1 unless otherwise stated.

Data line 16

The total information of data line 16 consists of fifteen 8-bit words. The contents of the information is shown in Fig.2, a timing diagram of the data line in Fig.3 and a survey of VTR control labels in Fig.4.

From the total fifteen 8-bit words, the SAF1135 extracts words 5, 11, 12, 13 and 14. The contents of these words can be requested via the built-in I²C bus interface (see Fig.9). The circuit is fully transparent, thus each bit is transferred without modification. Only the sequence of the words is changed; words 11 to 14 being transmitted first followed by word 5.

By evaluation of the Video Composite Sync (VCS) signal at pin 12 the SAF1135 identifies the beginning of line 16 in the first field. The line 16 decoder stage releases the start code detector. When a correct start code is detected (for timing of start code detection, see Fig.5) words 5 and 11 to 14 are decoded, checked for biphase errors and stored in register bank R (Receive). If no biphase error has occurred, the contents of register bank R are transferred to register bank T (Transmit) by the data valid control signal (DAVID). If the system has been addressed, this transfer is delayed until the next start or stop condition of the I²C bus has been received.

The last correct data line information remains available until it is read via the I²C bus. After it is read once the stored information is no longer considered to be valid, the internal new data flag (NWDAT) is reset and if the circuit is addressed, the only VPS data sent back is "FFF...F". The same conditions apply after power-up. Then no data can be read out.

New data is available after reception of another error-free line 16.

Power-on Reset

Reset pulses applied externally to pin 5 (RESET; active LOW) are latched internally by the power-on reset circuit.

RESET = LOW influences:

- I²C bus logic to no acknowledge
- NWDAT flag and internal timing to reset
- Data available output (DAV; active LOW) at pin 6 forced to LOW
- Data reset output (DAR) at pin 13 forced to HIGH
- Serial data (SDA) input/output at pin 3 released

When RESET changes to HIGH the reset period is terminated with the next negative-going transition of the data line clock (DLCL) input at pin 11. Then, the data available (DAV) output at pin 6 will go HIGH.

When an external reset is not used pin 5 is connected to V_{DD} . If an external reset is required, the rise time (t_r) of RESET voltage must be greater than 50 μ s. An external 10 k Ω resistor connected between pin 5 and V_{DD} and an external 2,7 nF capacitor connected to V_{SS} will result in t_r \ge 50 μ s.

SAF1135

WORD	CONTENT	
1	Run in	
2	Start code	
3	Program source identification (binary coded)	
4	Program source identification (ASCII sequential)	
5	Sound and VTR control information	
6	Program/Test picture identification	
7	Internal information exchange	
8		
9	 Address assignment of signal distribution 	
10	Messages/Commands	
11		
12		
13	VTR Control Information	
14		
15	Reserve	

Fig.2 Total information of data line 16.

SAF1135

Data line data and clock inputs (DLD; DLCL)

The data line data and clock signals from the SAA5235 are input at pins 8 and 11 respectively. The data transmission is biphase modulated, the bit transfer rate is 2,5 Mbit/s and the clock frequency is 5 MHz.

Input DLD incorporates an internal active clamping circuit. DLCL is internally a.c. coupled.

Video composite sync input (VCS)

The VCS input pulse at pin 12 is used for:

- Generation of the data reset pulse (DAR)
- Identification of the first field
- Selection of line 16

The timing of the data reset pulse generation is shown in Fig.6.

I²C bus address inputs (A0; A1)

The two I²C address inputs at pins 4 and 1 respectively, provide the four different addresses 20H, 22H, 24H and 26H.

Data reset output (DAR)

The DAR output at pin 13 is a line frequency pulse with a 0,88 duty factor derived from the VCS pulse. The DAR pulse is fed to the SAA5235 to reset the data slicer circuit and the clock phase detector circuit.

Data available output (DAV)

The DAV active LOW output at pin 6 is set to LOW after reception of one error-free data line 16. DAV returns to HIGH after at the beginning of the next first field.

If no valid data is available DAV remains HIGH. However, a short duration (100 ns) pulse inserted at the beginning of line 16 ensures that a HIGH-to-LOW transition occurs, which can be used for triggering.

The timing of DAV output and word latch pulses is shown in Fig.7.

I²C bus

The internally latched data from words 5 and 11 to 14 can be clocked out via the I²C interface by a bus master. The lines are the serial clock input (SCL) at pin 2 and the serial data input/output (SDA) at pin 3.

The SAF1135 can operate only as a slave transmitter on the bus. Data format is shown in Fig.8.

- · The MSB of each word is transmitted first.
- There is no restriction on the number of words to be transmitted, but if more than five words are requested, word 5 will be repeated.
- Noise pulses less than 200 ns duration are ignored on the bus lines.

SAF1135

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage range (pin 14)	V _{DD}	-0,5 to +7,0)	V
Supply current (pin 14)	I _{DD}	max.	20	mA
Supply current (pin 7)	I _{SS}	max.	20	mA
Input voltage (pins 8 and 11)	VI	–0,5 to +12		V
Input voltage on all other pins	VI	–0,5 to V_{DD}	+0,5 ⁽¹⁾	V
Input current	±II	max.	10	mA
Output current	±I _O	max.	10	mA
Power dissipation per package ⁽²⁾	P _{tot}	max.	400	mW
Power dissipation per output	Р	max.	100	mW
Storage temperature range	T _{stg}	-65 to +150)	°C
Operating ambient temperature range	T _{amb}	0 to +70		°C

Notes

1. V_{DD} +0,5 not to exceed 7,0 V.

2. Above +60 °C: derate linearly with 8 mW/K.

HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see *'Handling MOS devices'*).

SAF1135

D.C. CHARACTERISTICS

 V_{DD} = 5 V \pm 10%; T_{amb} = 0 to 70 °C; unless otherwise specified

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply (pin 14)						
Supply voltage	_	V _{DD}	4,5	5	5,5	V
Supply current	Quiescent at 25 °C All inputs at V_{DD} or V_{SS} RESET at V_{SS} TEST 1 and TEST 2 at V_{DD} $I_O = 0$ mA	I _{DD}	-	-	10	μΑ
	During normal operation (without LED at \overline{DAV} , $V_{DD} = 5 V$)	I _{DD}	_	1	_	mA
Inputs						
A0, A1, TEST 1, TEST 2, SCL						
Input voltage LOW		VIL	_	_	0,2V _{DD}	V
Input voltage HIGH		VIH	0,7V _{DD}	-	-	V
Leakage current		ILI	_	-	1	μΑ
DLCL						
Input voltage	Clock internally a.c. coupled	VI	-	-	12	V
Leakage current	$V_{I} = 0$ to 10 V	ILI	-	-	10	μA
RESET	During normal operation pin 5 connected to V _{DD}					
Input voltage LOW		V _{IL}	_	-	0,3V _{DD}	V
Input voltage HIGH		VIH	0,9V _{DD}	-	-	V
Input current HIGH		IIH	_	-	15	μA
Leakage current		ILI	-	-	10	μA
VCS						
Input voltage LOW		VIL	-	-	0,8	V
Input voltage HIGH		V _{IH}	2,0	-	-	V
Leakage current		ILI	_	-	1	μA

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Inputs/Outputs						
DLD	Internal active clamping circuit, open drain output					
Input voltage LOW		VIL	_	-	0,9	V
Input voltage HIGH		VIH	2,0	-	12	V
Leakage current		ILI	_	-	1	μA
Output voltage LOW	$I_{OL} = 4 \text{ mA}$	V _{OL}	_	_	0,4	V
SDA	open drain output					
Input voltage LOW		V _{IL}	_	_	0,9	V
Input voltage HIGH		VIH	3,15	_	_	V
Leakage current	$V_{DD} = 6 V; V_I = 0 \text{ or } V_{DD}$	ILI	_	_	6	μA
Output voltage LOW	$I_{OL} = 4 \text{ mA}$	V _{OL}	-	-	0,4	V
Outputs						
DAR						
Output voltage LOW	$I_{OL} = 1 \text{ mA}$	V _{OL}	_	_	0,4	V
Output voltage HIGH	–I _{OH} = 400 μA	V _{OH}	V _{DD} -0,5 V	_	_	V
DAV						
Output voltage LOW	I _{OL} = 10 mA	V _{OL}	-	_	1,0	V
Output voltage HIGH	–I _{OH} = 400 μA	V _{OH}	V _{DD} –0,5 V	_	_	V

SAF1135

A.C. CHARACTERISTICS

 V_{DD} = 5 V \pm 10%; T_{amb} = 0 to 70 °C; unless otherwise specified

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Inputs						
Input capacitance		CI	_	_	10	pF
A0, A1, TEST 1, TEST 2, SCL						
Rise time	V _{IL(max)} to V _{IH(min)}	tr	50	_	-	μs
DLCL						
Clock frequency	sinusoidal input signal	f _{DLCL}	-	5	-	MHz
Input voltage	peak-to-peak value	V _{I(p-p)}	1	_	-	V
DLD						
Coupling capacitor		C _{EXT}	-	1	4,7	nF
Set-up time	relative to rising edge of DLCL	t _{SU}	40	_	-	ns
Hold-up time	relative to rising edge of DLCL	t _{HD}	40	-	-	ns
Outputs						
DAR, DAV						
Rise and fall times	C _L = 50 pF	t _r , t _f	-	_	50	ns
DAR-time LOW		t _{DAR,L}	_	7,8	-	μs
SDA						
Fall time	C _L = 400 pF	t _f	-	-	300	ns
I ² C bus - Input/Output						
	For both SDA and SCL valid					
Input current HIGH	0,9 V_{DD} , including I _{LI} of	IIH	_	_	10	μA
	possible output stage					
Input capacitance		CI	-	-	10	pF
Rise time		t _r	-	-	1	μs
Fall time		t _f	-	-	0,3	μs
Clock frequency		f _{CL}	-	-	100	kHz
Pulse duration LOW		t _{LOW}	4,7	-	-	μs
Pulse duration HIGH		t _{HIGH}	4,0	_	_	μs

SAF1135

APPLICATION INFORMATION

PACKAGE OUTLINE

DIP14: plastic dual in-line package; 14 leads (300 mil)

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	FERENCES EUROP		EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	
SOT27-1	050G04	MO-001AA				92-11-17 95-03-11	

SAF1135

SOT27-1

SAF1135

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"IC Package Databook"* (order code 9398 652 90011).

Soldering by dipping or by wave

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact

time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($T_{stg\,max}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than $300 \,^{\circ}$ C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.

DEFINITIONS

Data sheet status					
Objective specification	tive specification This data sheet contains target or goal specifications for product development.				
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.				
Product specification	This data sheet contains final product specifications.				
Limiting values					
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.					
Application information					
Where application information	Where application information is given, it is advisory and does not form part of the specification.				

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

PURCHASE OF PHILIPS I²C COMPONENTS

Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.