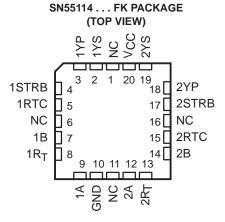

9 2A


- Choice of Open-Collector or Active Pullup (Totem-Pole) Outputs
- Single 5-V Supply
- Differential Line Operation
- Dual-Channel Operation
- TTL Compatible
- ±15-V Common-Mode Input Voltage Range
- Optional-Use Built-In 130-Ω Line-Terminating Resistor
- Individual Frequency-Response Controls
- Individual Channel Strobes
- Designed for Use With SN55113, SN75113, SN55114, and SN75114 Drivers
- Designed to Be Interchangeable With National DS9615 Line Receivers

description

The SN55115 and SN75115 dual differential line receivers are designed to sense small differential signals in the presence of large common-mode noise. These devices give TTL-compatible output signals as a function of the differential input voltage. The open-collector output configuration permits the wire-ANDing of similar TTL outputs (such as SN5401/SN7401) or other SN55115/SN75115 line receivers. This permits a level of logic to be implemented without extra delay.

GND [

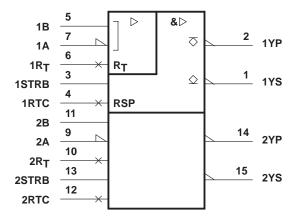
NC - No internal connection

The output stages are similar to TTL totem-pole outputs, but with sink outputs, 1YS and 2YS, and the corresponding active pullup terminals, 1YP and 2YP, available on adjacent package pins. The frequency response and noise immunity may be provided by a single external capacitor. A strobe input is provided for each channel. With the strobe in the low level, the receiver is disabled and the outputs are forced to a high level.

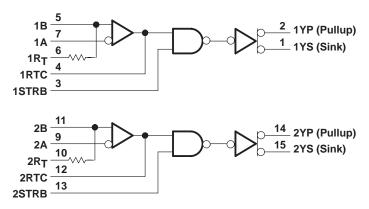
The SN55115 is characterized for operation over the full military temperature range of -55° C to 125°C. The SN75115 is characterized for operation from 0°C to 70°C.

FUNCTION TABLE

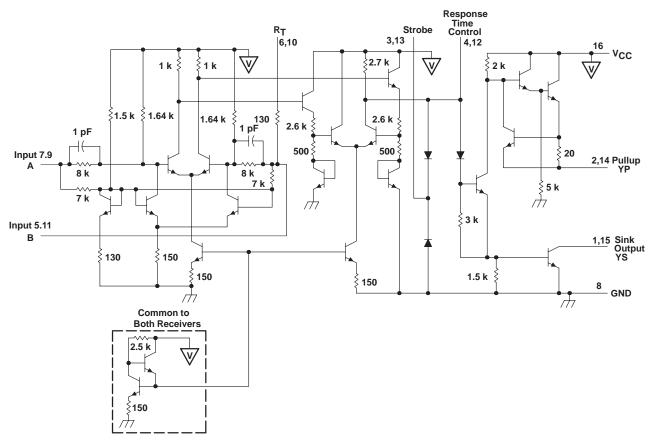
STRB	DIFF INPUT (A AND B)	OUTPUT (YP AND YS TIED TOGETHER)
L	Х	Н
Н	L	Н
Н	Н	L


 $H = V_I \ge V_{IH}$ min or V_{ID} more positive than V_{T+} max $L = V_I \le V_{IL}$ max or V_{ID} more negative than V_{T-} max X = irrelevant

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



logic symbol†



[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

schematic (each receiver)

Resistor values are nominal and in ohms.

Pin numbers shown are for the J, N, and W packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)	7 V
Input voltage V _I (A, B, and R _T)	
Input voltage V _I (STRB)	
Off-state voltage applied to open-collector outputs	14 V
Continuous total power dissipation	See Dissipation Rating Table
Storage temperature range, T _{stq}	–65°C to 150°C
Case temperature for 60 seconds: FK package	
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J or W package	ge 300°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: N package	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values, except differential input voltage, are with respect to network ground terminal.

SLLS072D - SEPTEMBER 1973 - REVISED MAY 1998

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
FK [†]	1375 mW	11.0 mW/°C	880 mW	275 mW
J†	1375 mW	11.0 mW/°C	880 mW	275 mW
N	1150 mW	9.2 mW/°C	736 mW	_
wt	1000 mW	8.0 mW/°C	640 mW	200 mW

[†] In the FK, J, and W packages, SN55115 chips are either silver glass or alloy mounted. SN75115 chips are glass mounted.

recommended operating conditions

	SN55115			ý	UNIT		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level input voltage at STRB, V _{IH}	2.4			2.4			V
Low-level input voltage at STRB, V _{IL}			0.4			0.4	V
High-level output current, IOH			-5			-5	mA
Low-level output current, IOL			15			15	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

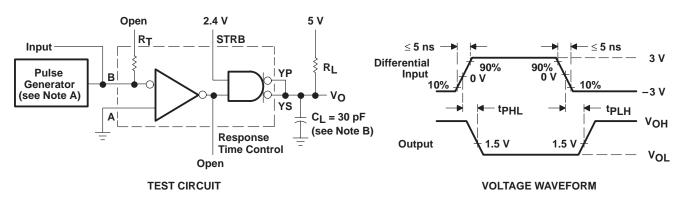
	PARAMETER	TEC	r CONDITIONS†			SN55115		5	N75115		UNIT
	PARAWETER	IES	CONDITIONS		MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX	UNIT
V _{IT+} §	Positive-going threshold voltage	V _O = 0 .4 V,	I _{OL} = 15 mA,	V _{IC} = 0			500			500	mV
V _{IT} _§	Negative-going threshold voltage	V _O = 2 .4 V,	$I_{OH} = -5 \text{ mA},$	VIC = 0	-500¶			-500¶			mV
VICR	Common-mode input voltage range	V _{ID} = ±1 V			+15 to -15	+24 to -19		+15 to -15	+24 to -19		V
			0.5.1/	$T_A = MIN$	2.2			2.4			
Vон	High-level ouput voltage	$V_{CC} = MIN$, $I_{OH} = -5 \text{ mA}$	$V_{ID} = -0.5 V$,	$T_A = 25^{\circ}C$	2.4	3.4		2.4	3.4		V
		011		$T_A = MAX$	2.4			2.4			
VOL	Low-level output voltage	$V_{CC} = MIN,$ $I_{OL} = 15 \text{ mA}$	$V_{ID} = -0.5 V$,			0.22	0.4		0.22	0.45	V
		., .,,,,	.,	$T_A = MIN$			-0.9			-0.9	
Ι _Ι L	Low-level input current	V _{CC} = MAX, Other input at 5.5	V _I = 0.4 V, 5 V	T _A = 25°C		-0.5	-0.7		-0.5	-0.7	mA
		Out of impart at of		$T_A = MAX$			-0.7			-0.7	
I _{SH}	High-level strobe	V _{CC} = MIN,	$V_{ID} = -0.5 V$,	$T_A = 25^{\circ}C$			2			5	μΑ
.зп	current	V _{strobe} = 4.5 V		$T_A = MAX$			5			10	μ
I _{SL}	Low-level strobe current	$V_{CC} = MAX,$ $V_{strobe} = 0.4 V$	$V_{ID} = 0.5 V,$	T _A = 25°C		-1.15	-2.4		-1.15	-2.4	mA
I(RTC)	Response-time- control current	$V_{CC} = MAX,$ $V_{RC} = 0$	$V_{ID} = 0.5 V,$	T _A = 25°C	-1.2	-3.4		-1.2	-3.4		mA
		V _{CC} = MIN,	V _{OH} = 12 V,	T _A = 25°C			100				
lo (off)	Off-state open-collector	$V_{ID} = -4.5 \text{ V}$		$T_A = MAX$			200				μΑ
IO(off)	output current	V _{CC} = MIN,	V _{OH} = 5.25 V,	$T_A = 25^{\circ}C$						100	μΑ
		$V_{ID} = -4.75 \text{ V}$		$T_A = MAX$						200	
R _T	Line-terminating resistance	V _{CC} = 5 V		T _A = 25°C	77	130	167	74	130	179	Ω
los	Supply-circuit output current#	$V_{CC} = MAX,$ $V_{O} = 0$	$V_{ID} = -0.5 V,$	T _A = 25°C	-15	-40	-80	-14	-40	-100	mA
ICC	Supply current (both receivers)	$V_{CC} = MAX,$ $V_{IC} = 0$	$V_{ID} = 0.5 V,$	T _A = 25°C		32	50		32	50	mA

[†] Unless otherwise noted, V_{Strobe} = 2.4 V. All parameters with the exception of off-state open-collector output current are measured with the active pullup connected to the sink output.

[‡] All typical values are at $V_{CC} = 5$ V, $T_A = 25$ °C, and $V_{IC} = 0$.

[§] Differential voltages are at the B input terminal with respect to the A input terminal.

The algebraic convention, in which the less positive (more negative) limit is designated as minimum, is used in this data sheet for threshold voltages only.


[#]Only one output should be shorted to ground at a time, and duration of the short circuit should not exceed one second.

SLLS072D - SEPTEMBER 1973 - REVISED MAY 1998

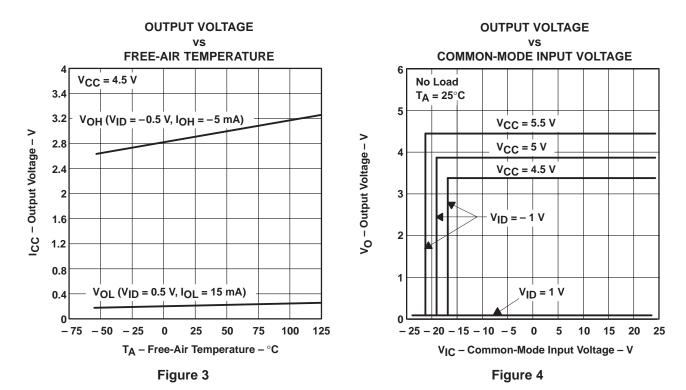
switching characteristics, V_{CC} = 5 V, C_L = 30 pF, T_A = 25°C

	PARAMETER	TEST CONDITI	SN55115			SN75115			UNIT	
	FARAMETER	TEST CONDITI	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
^t PLH	Propagation delay time, low-to-high level output	$R_L = 3.9 \text{ k}\Omega$, See	Figure 1		18	50		18	75	ns
tPHL	Propagation delay time, high-to-low level output	R _L = 390 Ω, See	Figure 1		20	50		20	75	ns

PARAMETER MEASUREMENT INFORMATION

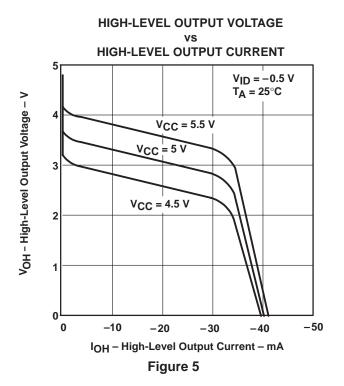
NOTES: A. The pulse generator has the following characteristics: Z_O = 50 Ω , PRR \leq 500 kHz, $t_W \leq$ 100 ns, duty cycle = 50%.

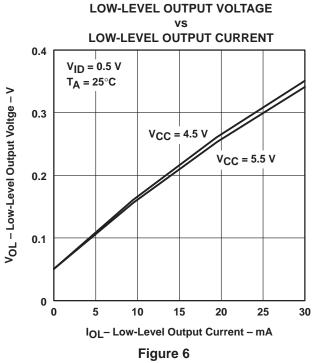
B. C_L includes probe and jig capacitance.

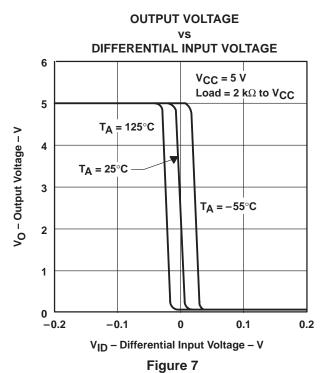

Figure 1. Test Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS[†]

INPUT CURRENT INPUT VOLTAGE V_{CC} = 5 V Input Not Under Test at 0 V T_A = 25°C I - Input Current - mA 2 0 - 2 -25 -20 -15 -10 -5 0 5 10 15 20 25 V_I - Input Voltage - V


Figure 2




[†] Data for temperatures below 0°C and above 70°C and for supply voltages below 4.75 V and above 5.25 V are applicable to SN55115 circuits only. These parameters were measured with the active pullup connected to the sink output.

TYPICAL CHARACTERISTICS

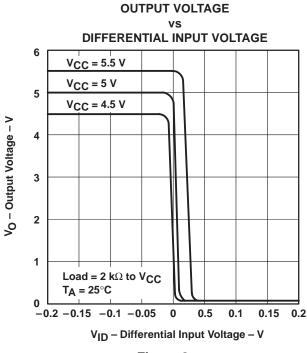
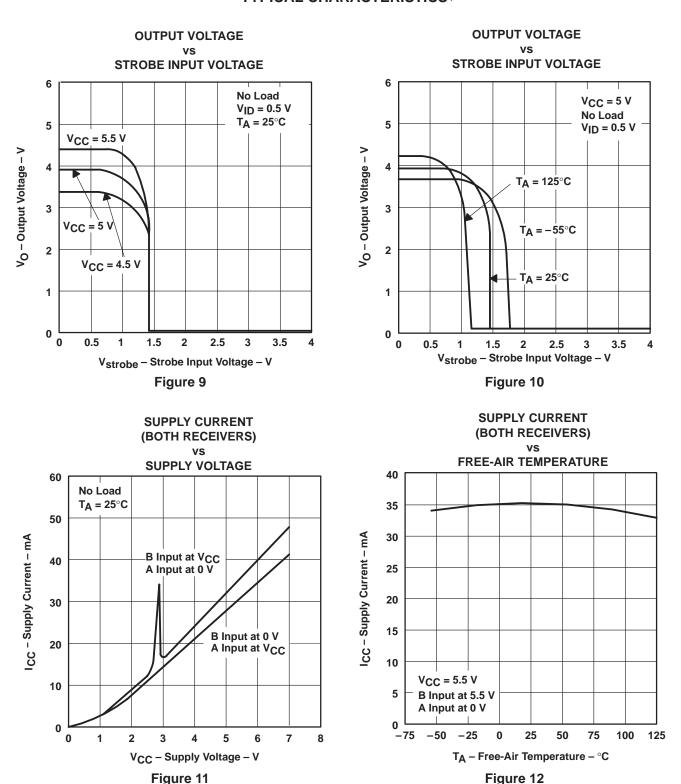
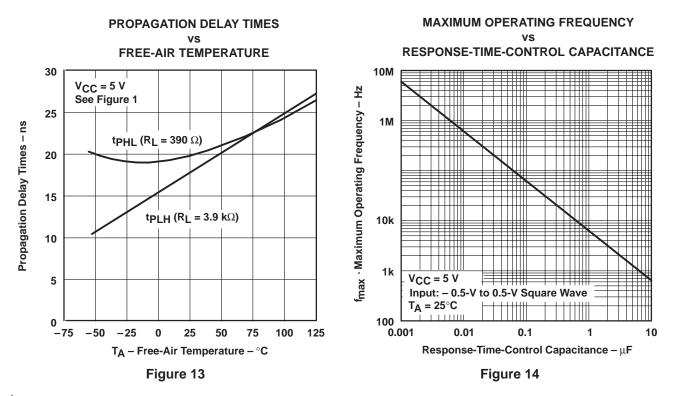
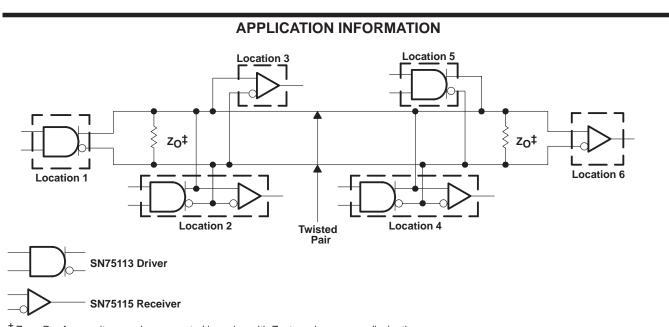



Figure 8


TYPICAL CHARACTERISTICS†


[†] Data for temperatures below 0°C and above 70°C and for supply voltages below 4.75 V and above 5.25 V are applicable to SN55115 circuits only. These parameters were measured with the active pullup connected to the sink output.

TYPICAL CHARACTERISTICS[†]

[†] Data for temperatures below 0°C and above 70°C and for supply voltages below 4.75 V and above 5.25 V are applicable to SN55115 circuits only. These parameters were measured with the active pullup connected to the sink output.

 \ddagger Z_O = R_T. A capacitor may be connected in series with Z_O to reduce power dissipation.

Figure 15. Basic Party-Line or Data-Bus Differential Data Transmission

25-Jan-2012

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
5962-88745012A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Call TI	
5962-88745012A-T	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	
5962-8874501FA	ACTIVE	CFP	W	16	1	TBD	Call TI	Call TI	
JM38510/10404BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	
M38510/10404BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	
SN55115J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	
SN75115D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN75115DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN75115DG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN75115DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN75115DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN75115DRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN75115N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
SN75115NE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
SN75115NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN75115NSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN75115NSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SNJ55115FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	
SNJ55115J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	
SNJ55115W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

PACKAGE OPTION ADDENDUM

25-Jan-2012

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

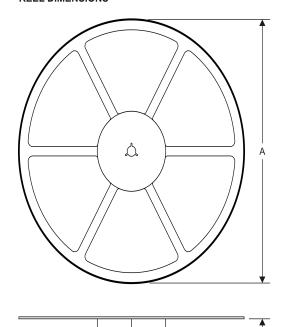
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN55115, SN75115:

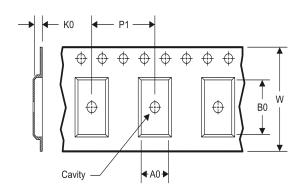
Catalog: SN75115

Military: SN55115

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION


www.ti.com 14-Jul-2012

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

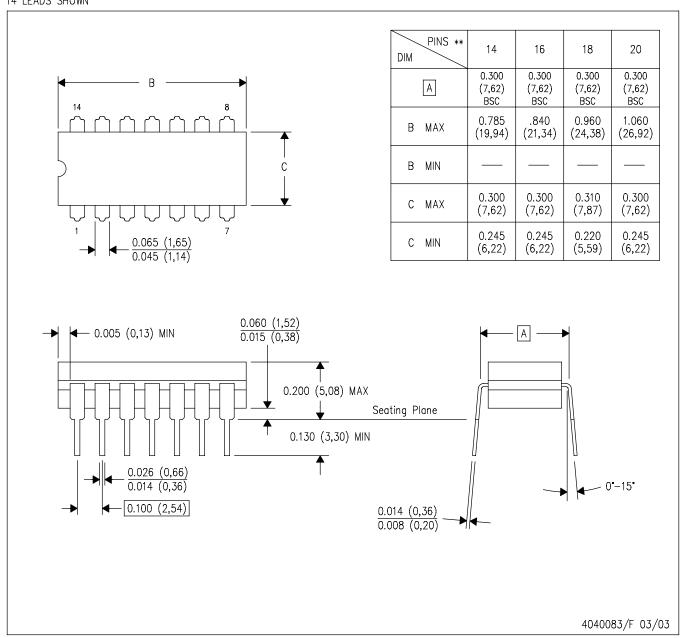
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal

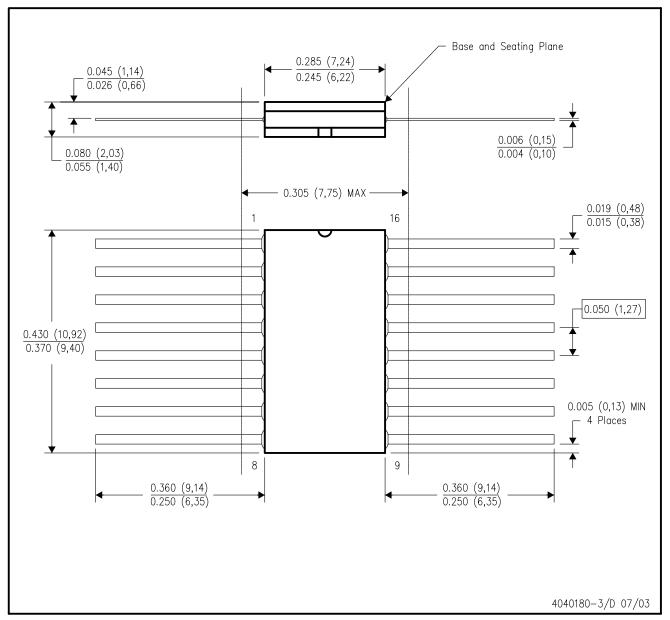
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN75115DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN75115NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION


www.ti.com 14-Jul-2012

*All dimensions are nominal

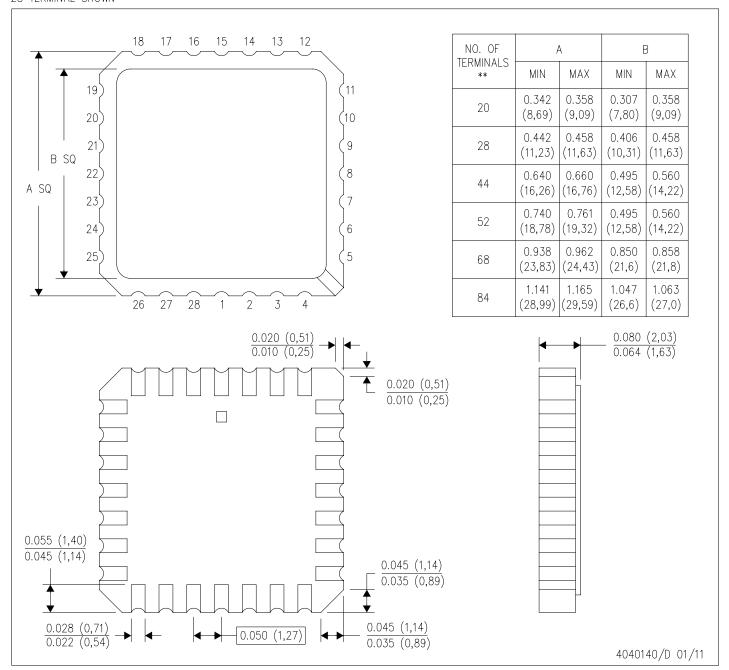
	Device	Package Type Package Drawing		Device Package Type Packag		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
Γ	SN75115DR	SOIC	D	16 2500		333.2	345.9	28.6		
Γ	SN75115NSR	SO	NS	16	2000	367.0	367.0	38.0		


14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F16 and JEDEC MO-092AC

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

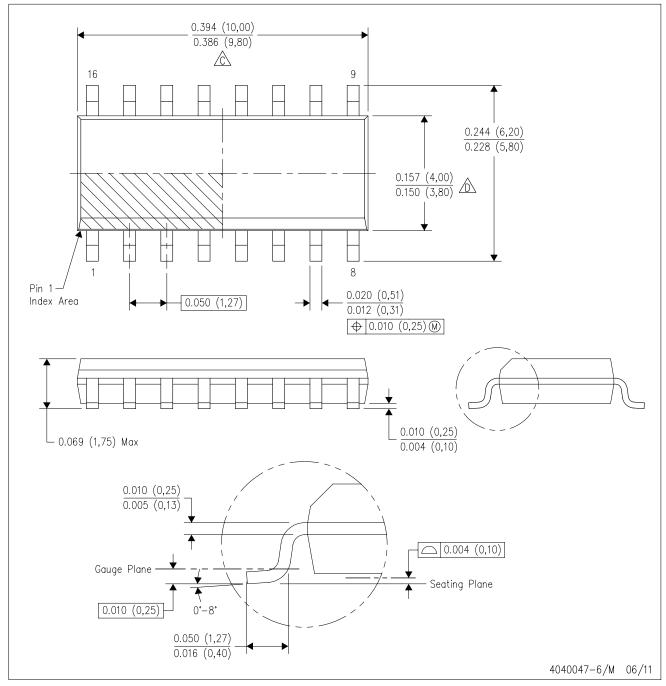
28 TERMINAL SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

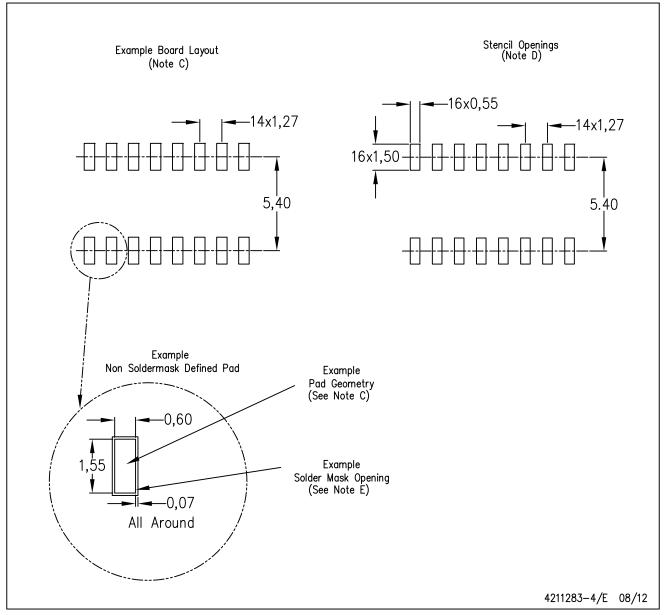
16 PINS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

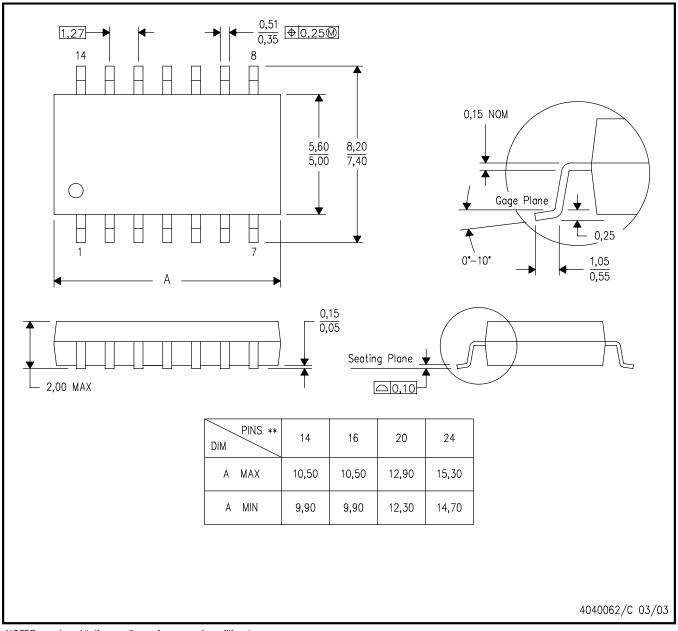


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products Applications

Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers DI P® Products Consumer Electronics www.dlp.com www.ti.com/consumer-apps

DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface Medical www.ti.com/medical interface.ti.com Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors <u>www.ti.com/omap</u> TI E2E Community <u>e2e.ti.com</u>

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>