- Nine Differential Channels for the Data and Control Paths of the Differential Small Computer Systems Interface (SCSI) and Intelligent Peripheral Interface (IPI-2)
- Meets or Exceeds the Requirements of ANSI Standard RS-485 and ISO 8482:1987(E)
- Packaged in $380-m i l$ Fine Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacing
- Designed to Operate at 10 Million Transfers Per Second
- Low Disabled Supply Current 1.4 mA Typical
- Thermal Shutdown Protection
- Power-Up/Power-Down Glitch Protection
- Positive and Negative Output Current Limiting
- Open-Circuit Fail-Safe Receiver Design

description

The SN55LBC976 is a 9-channel differential transceiver based on the SN55LBC176 LinASICTM cell. Use of Tl's LinBiCMOS ${ }^{\text {TM }}$ t process technology allows the power reduction necessary to integrate nine differential transceivers. On-chip enabling logic makes this device applicable for the data path (eight data bits plus parity) and the control path (nine bits) for both the Small Computer Systems Interface (SCSI) and the Intelligent Peripheral Interface (IPI-2) standard data interfaces.
The switching speed and testing capabilities of the SN55LBC976 are sufficient to transfer data over the data bus at 10 million transfers per second. Each of the nine channels conforms to the requirements of the ANSI RS-485 and ISO 8482:1987(E) standards referenced by ANSI X3.129-1986 (IPI), ANSI X3.131-1993 (SCSI-2), and the proposed SCSI-3 standards.
The SN55LBC976 is characterized for operation from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
\dagger Patent pending
LinASIC and LinBiCMOS are trademarks of Texas Instruments Incorporated.
logic diagram (positive logic) \dagger

† For additional logic diagrams, see Application Information, Table 1, and Figures 7 through 44.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Bus voltage range ... 10 V to 15 V
Data I/O and control (A-side) voltage range .. 0.3 V to 7 V
Continuous total power dissipation . .. internally limited

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values are with respect to GND.

SGLS091A - JUNE 1995 - REVISED JANUARY 1997
trecommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V_{CC}		4.75	5	5.25	V
Voltage at any bus terminal (separately or common-mode), $\mathrm{V}_{\mathrm{O}}, \mathrm{V}_{\mathrm{l}}$, or V_{IC}	$\mathrm{B}+$ or B-			12 -7	V
High-level input voltage, V_{IH}	All except B+ and B-	2			V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$	All except B+ and B-			0.8	V
High-level output current, IOH	B+ or B-			-60	mA
	A			-8	mA
Low-level output current, IOL	B+ or B-			60	mA
	A			8	mA
Operating free-air temperature, T_{A}		-55		125	${ }^{\circ} \mathrm{C}$

device electrical characteristics over recommended ranges of operating conditions (unless otherwise noted)

PARAMETER			TEST CONDITIONS		MIN	TYP†	MAX	UNIT
IIH	High-level input current	BSR, A, DE/ $\overline{\mathrm{RE}}$, and $\overline{\mathrm{CRE}}$	See Figure 3	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$			-200	$\mu \mathrm{A}$
		CDE0, CDE1, and CDE2					100	$\mu \mathrm{A}$
IIL	Low-level input current	BSR, A, DE/ $\overline{\mathrm{RE}}$, and $\overline{\mathrm{CRE}}$		$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$			-200	$\mu \mathrm{A}$
		CDE0, CDE1, and CDE2					100	$\mu \mathrm{A}$
${ }^{\text {ICC }}$	Supply current	All drivers and receivers disabled	BSR and CDE0 at 5 V , Other inputs at 0 V			1.4	5	mA
		All receivers enabled	No load, All other input	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\text {ID }}=5 \mathrm{~V}, \\ \text { s at } 0 \mathrm{~V} \end{array} \\ & \hline \end{aligned}$		29	50	mA
		All drivers enabled	BSR at 0 V , All other input	No load, at 5 V		4.8	15	mA
C_{0}	Bus-port output capacitance		B+ or B-			16		pF
C_{pd}	Power dissipation capacitance \ddagger		One driver			460		pF
			One receiver			50		pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\neq \mathrm{C}_{\mathrm{pd}}$ determines the no-load dynamic current consumption; $\mathrm{IS}=\mathrm{C}_{\mathrm{pd}} \times \mathrm{V}_{\mathrm{CC}} \times f+\mathrm{I}_{\mathrm{CC}}$.
driver electrical characteristics over recommended ranges of operating conditions (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
$\left\|\mathrm{V}_{\text {OD }}\right\|$ Differential output voltage	$\mathrm{V}_{\text {test }}=-7 \mathrm{~V}$ to 12 V , See Figure 2	1	2	V
IOS Output short-circuit current	See Figure 1		± 250	mA
IOZ High-impedance-state output current	See receiver input current			

SN55LBC976

9-CHANNEL DIFFERENTIAL TRANSCEIVER

SGLS091A - JUNE 1995 - REVISED JANUARY 1997
receiver electrical characteristics over recommended ranges of operating conditions (unless otherwise noted)

PARAMETER			TEST CONDITIONS		MIN	TYP†	MAX	UNIT
VOH	High-level output voltage		$\mathrm{V}_{\mathrm{ID}}=200 \mathrm{mV} \text {, }$ See Figure 3	$\mathrm{IOH}=-8 \mathrm{~mA},$	2.5			V
VOL	Low-level output voltage		$\mathrm{V}_{\mathrm{ID}}=-200 \mathrm{mV} \text {, }$ See Figure 3	$\mathrm{IOL}=8 \mathrm{~mA},$			0.8	V
VIT+	Positive-going input threshold voltage \ddagger		$\mathrm{IOH}=-8 \mathrm{~mA}$,	See Figure 3			0.2	V
			$\mathrm{IOH}=-8 \mathrm{~mA},$ See Figure 3	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$,			0.5	
VIT-	Negative-going input threshold voltage		$\mathrm{IOL}=8 \mathrm{~mA}$,	See Figure 3	-0.2			V
$\mathrm{V}_{\text {hys }}$	Receiver input hysteresis ($\mathrm{V}_{\mathrm{IT}+}-\mathrm{V}_{\mathrm{IT}-}$)					45		mV
1	Receiver input current	$\mathrm{B}+$ and $\mathrm{B}-$	$\mathrm{V}_{\mathrm{I}}=12 \mathrm{~V},$ Other input at 0 V ,	$\overline{\mathrm{V}_{\mathrm{CC}}}=5 \mathrm{~V},$ See Figure 3		0.7	1.5	mA
			$\begin{aligned} & \hline \mathrm{V}_{\mathrm{I}}=12 \mathrm{~V}, \\ & \text { Other input at } 0 \mathrm{~V}, \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V},$ See Figure 3		0.8	1.5	mA
			$\begin{aligned} & \hline \mathrm{V}_{\mathrm{I}}=-7 \mathrm{~V}, \\ & \text { Other input at } 0 \mathrm{~V}, \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V},$ See Figure 3		-0.5	-1	mA
			$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=-7 \mathrm{~V}, \\ & \text { Other input at } 0 \mathrm{~V} \text {, } \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V},$ See Figure 3		-0.4	-1	mA
loz	High-impedance-state output current		See Figure 3	$\mathrm{V}_{\mathrm{O}}=$ GND			-200	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$			50		

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger This parameter is not tested to meet RS-485 or SCSI standards at $-55^{\circ} \mathrm{C}$.
driver switching characteristics over recommended operating conditions (unless otherwise noted) (see Figure 4)

PARAMETER		TEST CONDITIONS		MIN	TYP†	MAX	UNIT
$t_{d D}$	Differential delay time, high-to-low-level output ($\mathrm{t}_{\mathrm{d} D H}$) or low-to-high-level output (tdDL)			4		30	ns
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	9		17	
$\mathrm{t}_{\text {sk (lim) }}$	Skew limit, the maximum difference in propagation delay times between any two drivers on any two devices					12	ns
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	See Note 2			8	
$\mathrm{t}_{\text {sk(p) }}$	Pulse skew ($\left\|\mathrm{t}_{\mathrm{d} D}-\mathrm{t}_{\mathrm{d} D \mathrm{H}}\right\|$)					6	ns
t_{t}	Transition time (r_{r} or t_{f})				10		ns

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 2: This specification applies to any $5^{\circ} \mathrm{C}$ band within the operating temperature range.
receiver switching characteristics over recommended operating conditions (see Figure 5) (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYPt	MAX	UNIT	
${ }_{\text {tpd }}$	Propagation delay time, high-to-low-level output (tpHL) or low-to-high-level output (tpLH)		16		36	ns	
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	21		31		
${ }^{\text {tsk }}$ (lim)	Skew limit, the maximum difference in propagation delay times between any two drivers on any two devices				12	ns	
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad$ See Note 2			9		
$\mathrm{t}_{\text {sk }}(\mathrm{p})$	Pulse skew (\|tpHL - tpLH)			2	6	ns
		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$			10	ns	
t_{t}	Transition time (tr_{r} or tf_{f})			3		ns	

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 2: This specification applies to any $5^{\circ} \mathrm{C}$ band within the operating temperature range.
transceiver switching characteristics over recommended operating conditions

PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
ten(RXL) Enable time, transmit-to-receive to low-level output	See Figure 6	180*	ns
ten(RXH) Enable time, transmit-to-receive to high-level output		180*	ns
ten(TXL) Enable time, receive-to-transmit to low-level output		110*	ns
ten(TXH) Enable time, receive-to-transmit to high-level output		110*	ns
$\mathrm{t}_{\text {su }}$ Setup time, CDE0, CDE1, CDE2, BSR, or $\overline{\overline{\mathrm{CRE}}}$ to active input(s) or output(s)		180*	ns

* This parameter is not production tested.
thermal characteristics

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{R}_{\theta \text { JA }}$ Junction-to-free-air thermal resistance	Board mounted, No air flow		95.4		${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\theta \text { JC }}$ Junction-to-case thermal resistance			5.67		${ }^{\circ} \mathrm{C} / \mathrm{W}$

PARAMETER MEASUREMENT INFORMATION

NOTE A: For the l_{OZ} test, the BSR input is at 5 V and all others are at 0 V .
Figure 1. Driver Test Circuit and Input Conditions

PARAMETER MEASUREMENT INFORMATION

Figure 2. Driver V_{OD} Test Circuit

NOTE A: For the IOZ measurement, BSR is at 5 V and CDE0, CDE1, and CDE2 are at 0 V .
Figure 3. Receiver Test Circuit and Input Conditions

\dagger Includes probe and jig capacitance.
NOTE A: The input is provided by a pulse generator with an output of 0 V to 3 V , PRR of $1 \mathrm{MHz}, 50 \%$ duty cycle, t_{r} and $\mathrm{t}_{\mathrm{f}}<6 \mathrm{~ns}$, and $\mathrm{Z}_{\mathrm{O}}=50 \Omega$.

TEST CIRCUIT

VOLTAGE WAVEFORMS
Figure 4. Driver Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

† Includes probe and jig capacitance.
NOTE A: The input is provided by a pulse generator with an output of 0 to 3 V , PRR of 1 MHz ,
50% duty cycle, t_{r} and $\mathrm{t}_{\mathrm{f}}<6 \mathrm{~ns}$, and $\mathrm{Z}_{\mathrm{O}}=50 \Omega$.

Figure 5. Receiver Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

\dagger Includes probe and jig capacitance.
NOTE A: The input is provided by a pulse generator with an output of 0 V to $3 \mathrm{~V}, \mathrm{PRR}$ of $1 \mathrm{MHz}, 50 \%$ duty cycle, t_{r} and $\mathrm{t}_{\mathrm{f}}<6 \mathrm{~ns}$, and $Z_{O}=50 \Omega$.

S1 to 5 V
S2 to 0 V
S3 to 0 V
-

Figure 6. Enable Time Test Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS

Figure 7

INPUT CURRENT
vS
INPUT VOLTAGE

Figure 8

Figure 9

TYPICAL CHARACTERISTICS

DRIVER
LOW-LEVEL OUTPUT VOLTAGE vs
LOW-LEVEL OUTPUT CURRENT

Figure 10

DRIVER
HIGH-LEVEL OUTPUT VOLTAGE
vs HIGH-LEVEL OUTPUT CURRENT

Figure 11

DRIVER
DIFFERENTIAL OUTPUT VOLTAGE
vs
OUTPUT CURRENT

Figure 12

TYPICAL CHARACTERISTICS

Figure 13

RECEIVER
high-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT

Figure 15

DRIVER
HIGH-LEVEL OUTPUT CURRENT
vs
SUPPLY VOLTAGE

Figure 14

RECEIVER
LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT

Figure 16

TYPICAL CHARACTERISTICS

DRIVER
DIFFERENTIAL OUTPUT VOLTAGE
VS
FREE-AIR TEMPERATURE

Figure 17

RECEIVER
PROPAGATION DELAY TIME
VS
FREE-AIR TEMPERATURE

Figure 18

Figure 19

APPLICATION INFORMATION

Table 1. Typical Signal and Terminal Assignments

SIGNAL	TERMINAL	SCSI DATA	SCSI CONTROL	IPI DATA	IPI CONTROL
CDE0	54	DIFFSENSE	DIFFSENSE	V_{CC}	V_{CC}
CDE1	55	GND	GND	ХMTA, ХМТВ	GND
CDE2	56	GND	GND	ХмTA, ХМТВ	SLAVE/MASTER
BSR	2	GND	GND	GND, BSR	GND
$\overline{\text { CRE }}$	3	GND	GND	GND	V_{CC}
1A	4	DB0, DB8	ATN	AD7, BD7	NOT USED
1DE/RE	5	DBE0, DBE8	INIT EN	GND	GND
2A	6	DB1, DB9	BSY	AD6, BD6	NOT USED
2DE/ $\overline{R E}$	7	DBE1, DBE9	BSY EN	GND	GND
3A	8	DB2, DB10	ACK	AD5, BD5	SYNC IN
3DE/ $\overline{R E}$	9	DBE2, DBE10	INIT EN	GND	GND
4A	10	DB3, DB11	RST	AD4, BD4	SLAVE IN
4DE/ $\overline{R E}$	11	DBE3, DBE11	GND	GND	GND
5A	19	DB4, DB12	MSG	AD3, BD3	NOT USED
5DE/RE	20	DBE4, DBE12	TARG EN	GND	GND
6A	21	DB5, DB13	SEL	AD2, BD2	SYNC OUT
6DE/ $/$ RE	22	DBE5, DBE13	SEL EN	GND	GND
7A	23	DB6, DB14	C/D	AD1, BD1	MASTER OUT
7DE/ $\overline{R E}$	24	DBE6, DBE14	TARG EN	GND	GND
8A	25	DB7, DB15	REQ	AD0, BD0	SELECT OUT
8DE/ $/ \overline{R E}$	26	DBE7, DBE15	TARG EN	GND	GND
9A	27	DBP0, DBP1	I/O	AP, BP	ATTENTION IN
9DE/RE	28	DBPE0, DBPE1	TARG EN	ХMTA, ХMTB	V_{CC}

ABBREVIATIONS:
DBn, data bit n , where $\mathrm{n}=(0,1, \ldots, 15)$
DBEn, data bit n enable, where $\mathrm{n}=(0,1, \ldots, 15)$
DBPO, parity bit for data bits 0 through 7 or IPI bus A
DBPEO, parity bit enable for PO
DBP1, parity bit for data bits 8 through 15 or IPI bus B
DBPE1, parity bit enable for P1
ADn or BDn, IPI Bus A - Bit $n(A D n)$ or Bus B - Bit $n(B D n)$, where $n=(0,1, \ldots, 7)$
AP or BP, IPI parity bit for bus A or bus B
XMTA or XMTB, transmit enable for IPI bus A or B
BSR, bit significant response
INIT EN, common enable for SCSI initiator mode
TARG EN, common enable for SCSI target mode
NOTE 3: Signal inputs are shown as active high. When only active-low inputs are available, logic inversion is accomplished by reversing the $\mathrm{B}+$ and B - connecter terminal assignments.

APPLICATION INFORMATION

Function Tables

INPUTS		OUTPUT
$\mathbf{B + \dagger}$	B- \dagger	A
L	H	L
H	L	H

INPUTS				OUTPUTS		
DE/RE	A	B+†	B- \dagger	A	B +	B -
L	-	L	H	L	-	-
L	-	H	L	H	-	-
H	L	-	-	-	L	H
H	H	-	-	-	H	L

WIRED-OR DRIVER

INPUT	OUTPUTS	
A	B+	B-
L	Z	Z
H	H	L

INPUT	OUTPUTS	
\mathbf{A}	B_{+}	B_{-}
L	L	H
H	H	L

DRIVER WITH ENABLE

INPUTS		OUTPUTS	
DE/RE	A	B+	B-
L	L	Z	Z
L	H	Z	Z
H	L	L	H
H	H	H	L

TWO-ENABLE INPUT DRIVER

INPUTS		OUTPUTS	
DE//̄E	A	B +	B-
L	L	Z	Z
L	H	H	L
H	L	L	H
H	H	H	L

H = high level, $\quad L=$ low level, $\quad X=$ irrelevant, $\quad Z=$ high impedance (off)
\dagger An H in this column represents a voltage that is 200 mV higher than the other bus input. An L represents a voltage that is 200 mV lower than the other bus input. Any voltage less than 200 mV results in an indeterminate receiver output.

APPLICATION INFORMATION

(a) ACTIVE-HIGH BIDIRECTIONAL I/O WITH SEPARATE ENABLE
(c) WIRED-OR DRIVER AND ACTIVE-HIGH INPUT

(b) ACTIVE-LOW BIDIRECTIONAL I/O WITH SEPARATE ENABLE
(d) SEPARATE ACTIVE-HIGH INPUT, OUTPUT, AND ENABLE

(e) SEPARATE ACTIVE-LOW INPUT AND OUTPUT AND ACTIVE-HIGH ENABLE

(f) WIRED-OR DRIVER AND ACTIVE-LOW INPUT
\dagger When this resistor is 0Ω, the circuit is open drain.
\ddagger Must be open-drain or 3-state output
NOTE A: The BSR, $\overline{\mathrm{CRE}}, \mathrm{A}$, and DE/ $\overline{\mathrm{RE}}$ inputs have internal pullups. CDE0, CDE1, and CDE2 have internal pulldowns.
Figure 20. Typical SCSI Transceiver Connections

APPLICATION INFORMATION

channel logic configurations with control input logic
The following logic diagrams show the positive-logic representation for all combinations of control inputs. The control inputs are from MSB to LSB; the BSR, CDE0, CDE1, CDE2, and CRE bit values are shown below the diagrams. Channel 1 is at the top of the logic diagrams; channel 9 is at the bottom of the logic diagrams.

Figure 21. 00000

Hi-Z

- W
$\mathrm{Hi}-\mathrm{Z}$
$\overbrace{\sim}^{\mathrm{Hi}-\mathrm{Z}}$
$\xrightarrow[\sim]{\mathrm{Hi}-\mathrm{Z}}$
Hi-Z

Figure 22. 00001

Hi-Z

Figure 24. 00011

Figure 25. 00100

$\overbrace{\sim}^{\mathrm{Hi}-\mathrm{Z}}$

Figure 26. 00101

Figure 27.00110

Figure 28. 00111

Figure 29.01000

Figure 30. 01001

Figure 32. 01011

Figure 31. 01010

Figure 33. 01100

$B=$

Figure 34. 01101
Figure 35. 01110

APPLICATION INFORMATION

Figure 36. 01111

Figure 38.10010 and 10011

$\rightarrow \overbrace{-3}^{\mathrm{Hi}-\mathrm{Z}}$
Figure 39.10100 and 10101

Figure 40. 10110 and 10111

Figure 41.11000 and 11001

Figure 42. 11010 and 11011

$-{ }_{-1}^{\mathrm{Hi}-\mathrm{Z}}$
Figure 43.11100 and 11101

$\xrightarrow[-]{\mathrm{Hi}-\mathrm{Z}}$
Figure 44.11110
and 11111

SN55LBC976

 9-CHANNEL DIFFERENTIAL TRANSCEIVERSGLS091A - JUNE 1995 - REVISED JANUARY 1997
MECHANICAL INFORMATION
WD (R-GDFP- $\mathrm{F}^{* *)}$
48 PIN SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for pin identification only
E. Falls within MIL-STD-1835: GDFP1-F48 and JEDEC MO-146AA

> GDFP1-F56 and JEDEC MO-146AB

PACKAGING INFORMATION

| Orderable Device | Status $^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SNJ55LBC976WD | OBSOLETE | CFP | WD | 56 | TBD | Call TI | Call TI |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb -Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no $\mathbf{S b} / \mathbf{B r}$): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN55LBC976 :

- Catalog: SN75LBC976

NOTE: Qualified Version Definitions:

- Catalog - Tl's standard catalog product

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Tl under the patents or other intellectual property of TI .
Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	
Amplifiers	
Data Converters	amplifier.ti.com
DSP	dataconverter.ti.com
Clocks and Timers	dsp.ti.com
Interface	www.ti.com/cocks
Logic	nterace.ti.com
Power Mgmt	ogic.ti.com
Microcontrollers	Dowe.ti.com
RFID	nicrocontroler.ti.com
RF/IF and ZigBee® Solutions	NWw.ti-rfid.com

Applications	
Audio	www.ti.com/audio
Automotive	www.ticom/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medica
Military	www.ti.com/military
Optical Networking	www.ticom/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ticom/vided
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

