

SN65EPT22

www.ti.com

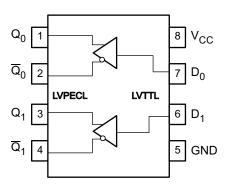
SLLS926A - DECEMBER 2008 - REVISED NOVEMBER 2010

3.3 V Dual LVTTL/LVCMOS to Differential LVPECL Buffer

Check for Samples: SN65EPT22

FEATURES

- Dual 3.3V LVTTL to LVPECL Buffer
- Operating Range
 - LVPECL V_{CC} = 3.0 V to 3.6 V With GND = 0 V
- Support for Clock Frequencies to 2.0 GHz (typ)
- 420 ps Typical Propagation Delay
- Deterministic HIGH Output Value for Open Input Conditions
- Built-in Temperature Compensation
- Drop in Compatible to MC100ELT23
- PNP Single Ended Inputs for Minimal Loading


PINOUT ASSIGNMENT

APPLICATIONS

- Data and Clock Transmission Over Backplane
- Signaling Level Conversion

DESCRIPTION

The SN65EPT22 is a low power dual LVTTL to LVPECL translator device. The device includes circuitry to maintain known logic HIGH level when inputs are in open condition. The SN65EPT22 is housed in an industry standard SOIC-8 package and is also available in TSSOP-8 package option.

Table 1. Pin Description

PIN	FUNCTION
D ₀ , D ₁	LVTTL data inputs
$Q_0, \overline{Q}_0, Q_1, \overline{Q}_1$	LVPECL outputs
V _{CC}	Positive supply
GND	Ground

ORDERING INFORMATION⁽¹⁾

PART NUMBER	PART MARKING	PACKAGE	LEAD FINISH
SN65EPT22D	EPT22	SOIC	NiPdAu
SN65EPT22DGK	EPT22	SOIC-TSSOP	NiPdAu

(1) Leaded device options not initially available. Contact sales representative for further details.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SN65EPT22

SLLS926A – DECEMBER 2008 – REVISED NOVEMBER 2010

www.ti.com

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

PARAMETER	CONDITION	VALUE	UNIT
Absolute supply voltage, V _{CC}		6	V
Absolute input voltage, VI	$GND = 0$ and $VI \le V_{CC}$	0 to 6	V
Supply voltage LVPEL		3.3	V
	Continuous	50	mA
Output current	Surge	100	
Operating temperature range		-40 to 85	°C
Storage temperature range	rature range -65 to 150		

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

POWER DISSIPATION RATINGS

PACKAGE	CIRCUIT BOARD MODEL	POWER RATING T _A < 25°C (mW)	THERMAL RESISTANCE, JUNCTION TO AMBIENT NO AIRFLOW	DERATING FACTOR T _A > 25°C (mW/°C)	POWER RATING T _A = 85°C (mW)
SOIC	Low-K	719	139	7	288
	High-K	840	119	8	336
SOIC-TSSOP	Low-K	469	213	5	188
	High-K	527	189	5	211

THERMAL CHARACTERISTICS

	PARAMETER	PACKAGE	VALUE	UNIT
θ_{JB}	Junction-to Board Thermal Resistance	SOIC	79	°C/W
		SOIC-TSSOP	120	
θ_{JC}	Junction-to Case Thermal Resistance	SOIC	98	°C/W
		SOIC-TSSOP	74	

KEY ATTRIBUTES

CHARACTERISTICS		VALUE
Moisture sensitivity level		Lead free package
	SOIC-8	Level 1
	TSSOP-8	Level 3
Flammability rating (Oxygen Index: 28 to 34)		UL 94 V-0 at 0.125 in
ESD-HBM		4 kV
ESD-machine model		200 V
ESD-charge device model		2 kV
Meets or exceeds JEDEC Spec EIA/JESD78 latchup test		

SLLS926A-DECEMBER 2008-REVISED NOVEMBER 2010

www.ti.com

TTL INPUT DC CHARACTERISTICS⁽¹⁾ ($V_{CC} = 3.3 V$, GND = 0, $T_A = -40^{\circ}C$ to 85°C)

	CHARACTERISTIC	CONDITION	MIN	TYP MAX	UNIT
I _{IH}	Input HIGH current	V _{IN} = 2.7 V		2) μΑ
I _{IHH}	Input HIGH current max	$V_{IN} = V_{CC}$		10) μΑ
I_{IL}	Input LOW current	V _{IN} = 0.5 V		-0.	6 mA
V _{IK}	Input clamp voltage	I _{IN} = -18 mA		-	V
VIH	Input high voltage		2.0		V
VIL	Input low voltage			0.8	3 V

(1) Device will meet the specifications after thermal balance has been established when mounted in a socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are assured only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

PECL OUTPUT DC CHARACTERISTICS⁽¹⁾ (V_{cc} = 3.3 V; GND = 0.0V) ⁽²⁾

CHARACTERISTIC		–40°C			25°C			85°C			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
I _{CC}	Power supply current		39	45		42	47		45	50	mA
V _{OH}	Output HIGH voltage ⁽³⁾	2155	2224	2405	2155	2224	2405	2155	2224	2405	mV
V _{OL}	Output LOW voltage ⁽³⁾	1355	1441	1605	1355	1438	1605	1355	1435	1605	mV

(1) Device will meet the specifications after thermal balance has been established when mounted in a socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are assured only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

(2) Output parameters vary 1:1 with V_{CC}

(3) All loading with 50Ω to V_{CC} –2.0V

AC CHARACTERISTICS $^{(1)}(V_{cc} = 3.0 \text{ V to } 3.6 \text{ V}; \text{ GND} = 0 \text{ V})^{(2)}$

CHARACTERISTIC			–40°C			25°C			85°C		
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
f _{MAX}	Max switching frequency ⁽³⁾ , see Figure 5		2.1			2.0			2.0		GHz
t _{PLH} / t _{PHL}	Propagation delay to differential output	230		550	230		550	230		550	ps
+	Within device skew ⁽⁴⁾		25	50		25	50		25	50	ps
t _{SKEW}	Device to device skew ⁽⁵⁾		100	200		100	200		100	200	ps
t _{JITTER}	Random clock jitter (RMS)		0.2	0.8		0.2	0.8		0.2	0.8	ps
t _r / t _f	Output rise/fall times (20%-80%)	150		300	150		300	150		300	ps

(1) Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are assured only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

(2) Measured using a 2.4 V source, 50% duty cycle clock source. All loading with 50 Ω to VCC – 2.0 V.

(3) Maximum switching frequency measured at output amplitude of 300 mV_{pp}.

(4) Skew is measured between outputs under identical transitions and conditions on any one device.

(5) Device-to-Device Skew for identical transitions at identical VCC levels.

SLLS926A - DECEMBER 2008 - REVISED NOVEMBER 2010

www.ti.com

Typical Termination for Output Driver

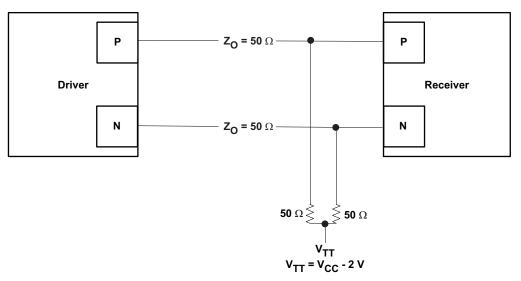


Figure 1. Termination for Output Driver

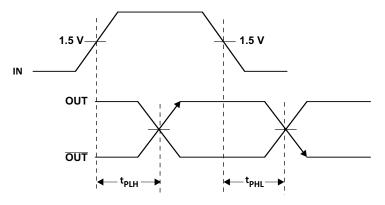


Figure 2. Output Propagation Delay

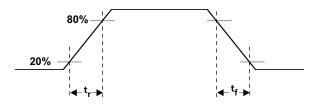


Figure 3. Output Rise and Fall Times

www.ti.com

SLLS926A - DECEMBER 2008 - REVISED NOVEMBER 2010

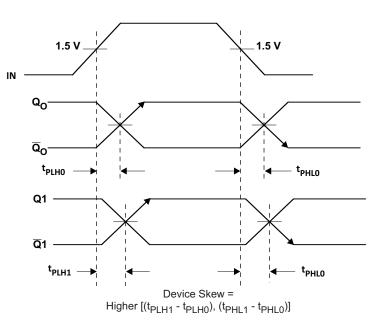


Figure 4. Device Skew

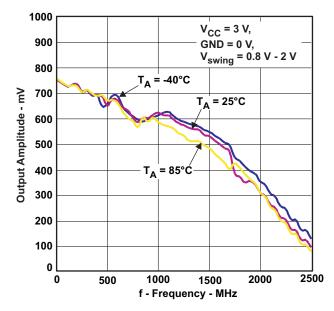


Figure 5. Output Amplitude versus Frequency

SLLS926A-DECEMBER 2008-REVISED NOVEMBER 2010

6

Copyright © 2008–2010, Texas Instruments Incorporated

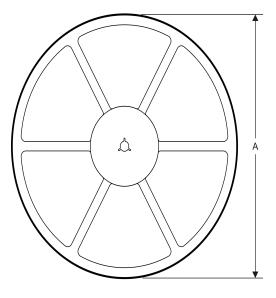
REVISION HISTORY

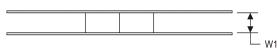
Changes from Original (November 2010) to Revision A

Changed SN65EPT22 to EPT22 (2 places) in Ordering Information Table under Part Marking column 1

www.ti.com

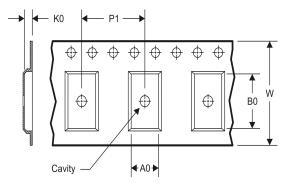
Page


PACKAGE MATERIALS INFORMATION


www.ti.com

TAPE AND REEL INFORMATION

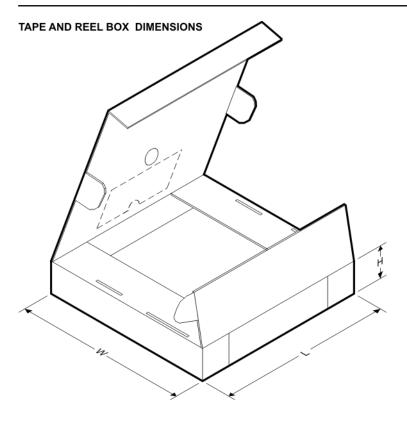
REEL DIMENSIONS


TEXAS INSTRUMENTS

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

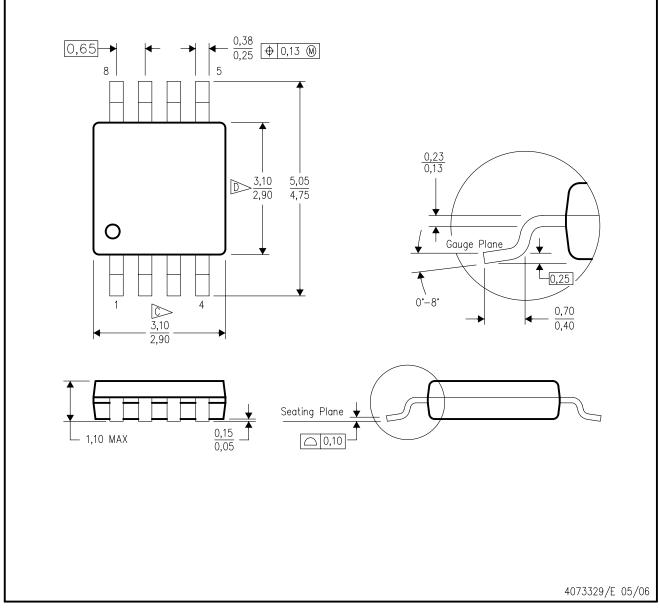

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65EPT22DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
SN65EPT22DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

16-Aug-2012



*All dimensions are nominal

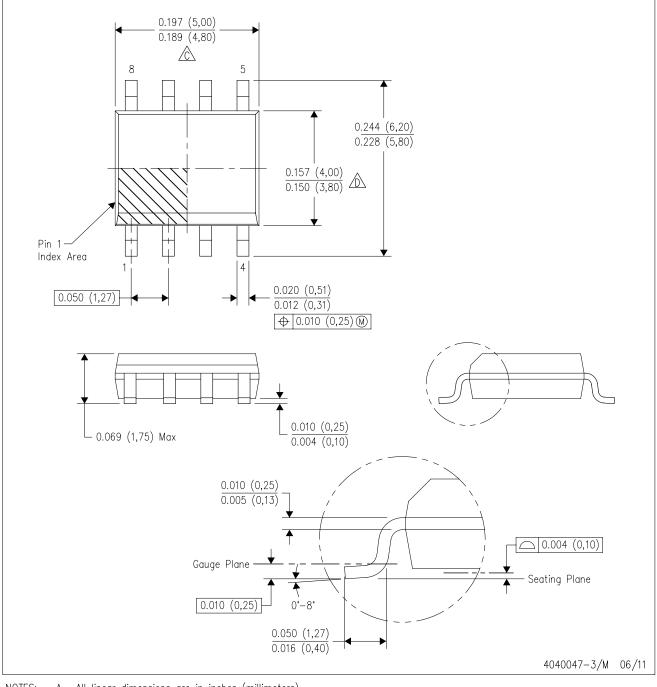
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65EPT22DGKR	VSSOP	DGK	8	2500	367.0	367.0	35.0
SN65EPT22DR	SOIC	D	8	2500	367.0	367.0	35.0

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

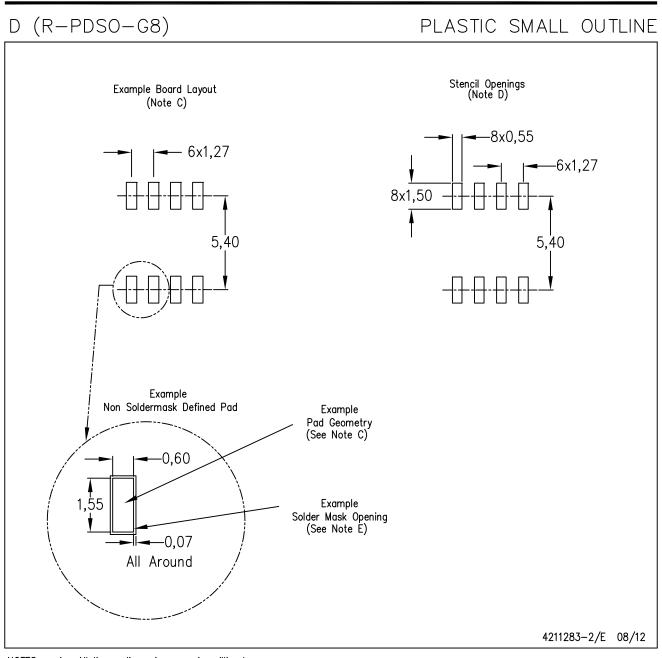
NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.

- D Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

D (R-PDSO-G8)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products		Applications			
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive		
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications		
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers		
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps		
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy		
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial		
Interface	interface.ti.com	Medical	www.ti.com/medical		
Logic	logic.ti.com	Security	www.ti.com/security		
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense		
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video		
RFID	www.ti-rfid.com				
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com		
Wireless Connectivity	www.ti.com/wirelessconnectivity				

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated