
DGG, DGV, OR DL PACKAGE

- Member of the Texas Instruments
 Widebus™ Family
- Standard '16245-Type Pinout
- 5-Ω Switch Connection Between Two Ports
- TTL-Compatible Input Levels
- I_{off} Supports Partial-Power-Down Mode Operation
- Active-Clamp Undershoot-Protection
 Circuit on the I/Os Clamps Undershoots up to -2 V
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description

The SN74CBTK16245 device provides 16 bits of high-speed TTL-compatible bus switching in a standard '16245 device pinout. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.

The A and B ports have an active-clamp undershoot-protection circuit. When there is an undershoot, the active-clamp circuit is enabled, and current from $V_{\hbox{CC}}$ is supplied to clamp the output, preventing the pass transistor from turning on.

NC - No internal connection

The device is organized as two 8-bit low-impedance switches with separate output-enable (\overline{OE}) inputs. When \overline{OE} is low, the switch is on, and data can flow from the A port to the B port, or vice versa. When \overline{OE} is high, the switch is open, and the high-impedance state exists between the two ports.

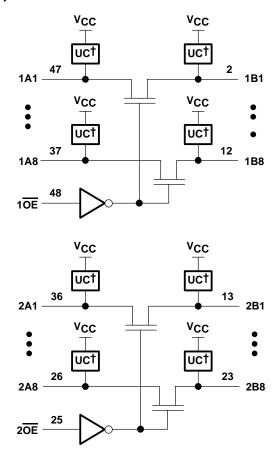
This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

ORDERING INFORMATION

TA	PACKA	AGE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	SSOP – DL	Tube	SN74CBTK16245DL	CBTK16245
-40°C to 85°C	330P - DL	Tape and reel	SN74CBTK16245DLR	CB1K16245
-40°C to 85°C	TSSOP – DGG	Tape and reel	SN74CBTK16245DGGR	CBTK16245
	TVSOP - DGV	Tape and reel	SN74CBTK16245DGVR	CP245

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


Widebus is a trademark of Texas Instruments.

FUNCTION TABLE (each 8-bit bus switch)

INPUT OE	FUNCTION
L	A port = B port
Н	Disconnect

logic diagram (positive logic)

† Undershoot clamp

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}		0.5 V to 7 V
Input voltage range, V _I (see Note 1)		0.5 V to 7 V
Continuous channel current		128 mA
Input clamp current, I_{IK} ($V_{I/O} < 0$)		–50 mA
Package thermal impedance, θ _{JA} (see Note 2):	: DGG package	
	DGV package .	58°C/W
	DL package	63°C/W
Storage temperature range, T _{stq}		

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 3)

		MIN	MAX	UNIT
Vcc	Supply voltage	4	5.5	V
VIH	High-level control input voltage	2		V
V _{IL}	Low-level control input voltage		0.8	V
TA	Operating free-air temperature	-40	85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PAR	RAMETER	TEST CONDITIONS					MAX	UNIT
VIK		$V_{CC} = 4.5 \text{ V},$	I _I = -18 mA				-1.2	V
VIKU		$V_{CC} = 5.5 \text{ V},$	$0~mA \geq I_{I} \geq -50~mA,$	OE = 5.5 V			-2	V
ļ.,		$V_{CC} = 0$,	V _I = 5.5 V				10	^
li li		$V_{CC} = 5.5 \text{ V},$	$V_I = 5.5 \text{ V or GND}$				±1	μΑ
l _{off}		$V_{CC} = 0$,	V_{I} or $V_{O} = 0$ to 5.5 V				20	μΑ
Icc		$V_{CC} = 5.5 \text{ V},$	$V_I = V_{CC}$ or GND,	IO = 0			3	μΑ
∆l _{CC} §	Control inputs	$V_{CC} = 5.5 \text{ V},$	One input at 3.4 V,	Other inputs at V _{CC} or GND			2.5	mA
Ci	Control inputs	V _I = 3 V or 0				3.5		pF
C _{io(OFF)}		$V_{O} = 3 \text{ V or } 0,$	OE = VCC			5.5		pF
		$V_{CC} = 4 \text{ V},$ TYP at $V_{CC} = 4 \text{ V}$	V _I = 2.4 V,	I _I = 15 mA		14	20	
ron¶			V. – 0	I _I = 64 mA		5	7	Ω
		$V_{CC} = 4.5 \text{ V}$	V _I = 0	I _I = 30 mA		5	7	
			V _I = 2.4 V,	I _I = 15 mA		8	12	

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

^{2.} The package thermal impedance is calculated in accordance with JESD 51-7.

[§] This is the increase in supply current for each input that is at the specified TTL-voltage level rather than VCC or GND.

[¶] Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two (A or B) terminals.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 4 V	V _{CC} =	= 5 V 5 V	UNIT
	(INFOT)	(001701)	MIN MAX	MIN	MAX	
t _{pd} †	A or B	B or A	0.35		0.25	ns
t _{en}	ŌĒ	A or B	7.4	1.6	4.9	ns
t _{dis}	ŌĒ	A or B	7.4	4.2	7.5	ns

[†] The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

undershoot characteristics

PARAMETER	TEST CONDITIONS		TYP‡	MAX	UNIT
Voutu	See Figures 1 and 2, and Table 1	2	V _{OH} -0.3		V

 $[\]ddagger$ All typical values are at $V_{CC} = 5 \text{ V}$ (unless otherwise noted), $T_A = 25^{\circ}\text{C}$.

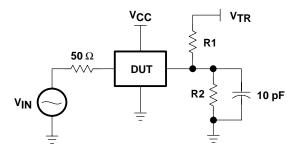


Figure 1. Device Test Setup

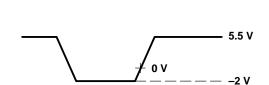
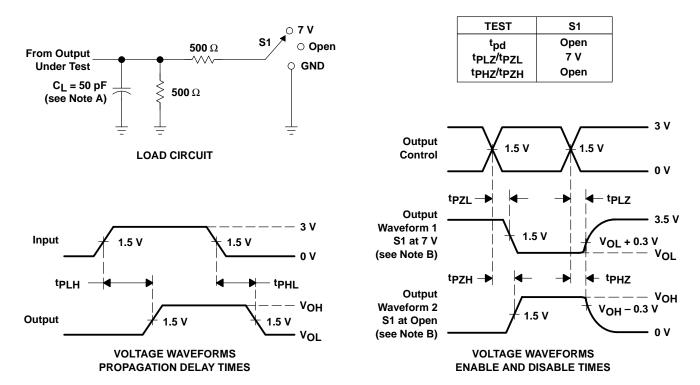


Figure 2. Transient Input Voltage Waveform


Table 1. Device Test Conditions

PARAMETER	VALUE	UNIT
B port under test§	See Figure 1	
V _{IN}	See Figure 2	V
t _W	20	ns
t _r	2	ns
t _f	2	ns
R1 = R2	100	kΩ
VTR	11	V
Vcc	5.5	V

[§] Other B-port outputs are open.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \,\Omega$, $t_f \leq$ 2.5 ns. $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzl and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms

5-Sep-2011

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
74CBTK16245DGGRE4	OBSOLETE	TSSOP	DGG	48		Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
74CBTK16245DGGRG4	OBSOLETE	TSSOP	DGG	48		Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
74CBTK16245DGVRE4	OBSOLETE	TVSOP	DGV	48		Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
74CBTK16245DGVRG4	OBSOLETE	TVSOP	DGV	48		Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
74CBTK16245DLRG4	OBSOLETE	SSOP	DL	48		Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74CBTK16245DGGR	OBSOLETE	TSSOP	DGG	48		Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74CBTK16245DGVR	OBSOLETE	TVSOP	DGV	48		Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74CBTK16245DL	OBSOLETE	SSOP	DL	48		Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74CBTK16245DLG4	OBSOLETE	SSOP	DL	48		Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74CBTK16245DLR	OBSOLETE	SSOP	DL	48		Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

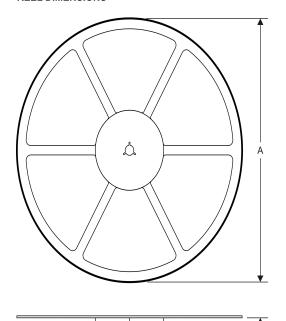
PACKAGE OPTION ADDENDUM

5-Sep-2011

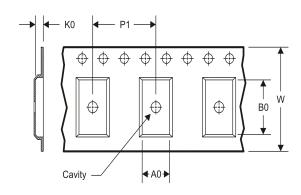
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

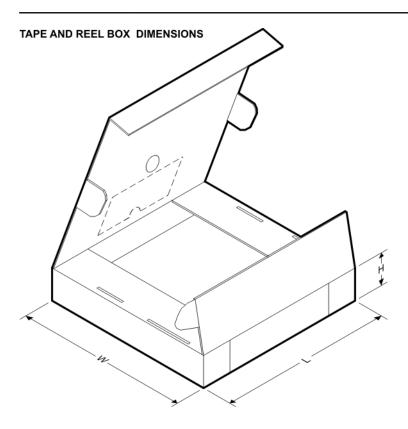
PACKAGE MATERIALS INFORMATION


www.ti.com 14-Jul-2012

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

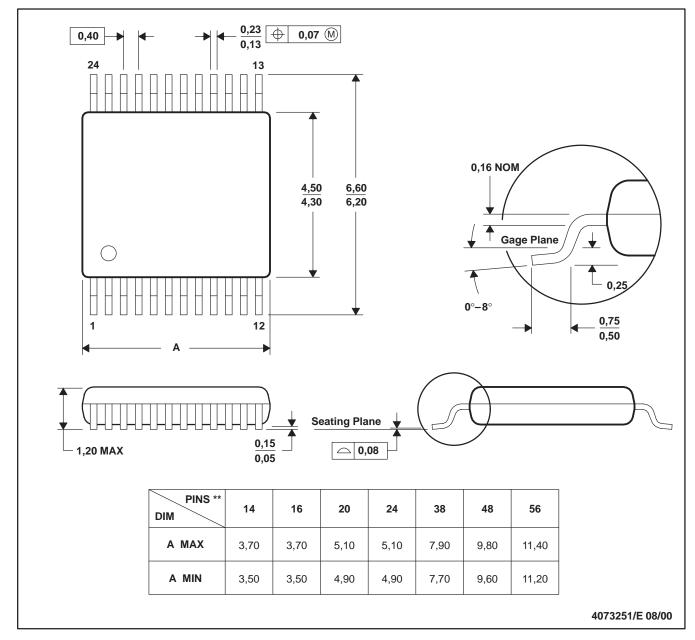

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74CBTK16245DGGR	TSSOP	DGG	48	0	330.0	24.4	8.6	15.8	1.8	12.0	24.0	Q1
SN74CBTK16245DGVR	TVSOP	DGV	48	0	330.0	16.4	7.1	10.2	1.6	12.0	16.0	Q1
SN74CBTK16245DLR	SSOP	DL	48	0	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1

www.ti.com 14-Jul-2012


*All dimensions are nominal

7 till difficitionation direction in di							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74CBTK16245DGGR	TSSOP	DGG	48	0	367.0	367.0	45.0
SN74CBTK16245DGVR	TVSOP	DGV	48	0	367.0	367.0	38.0
SN74CBTK16245DLR	SSOP	DL	48	0	367.0	367.0	55.0

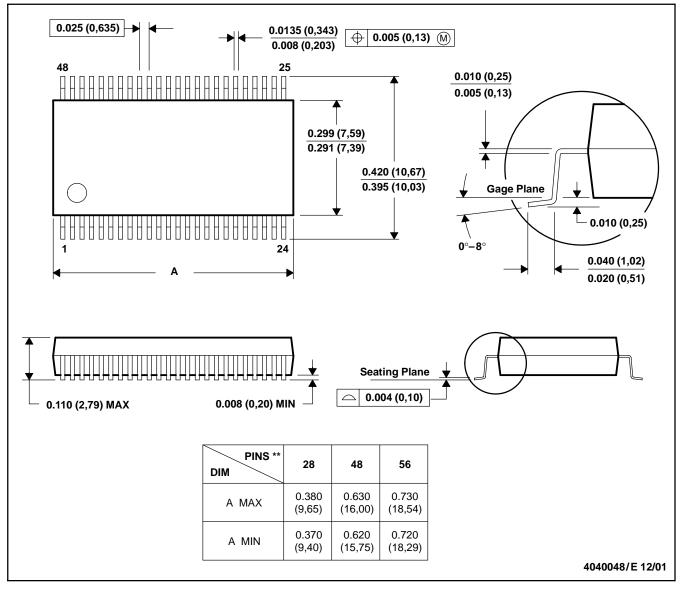
DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194

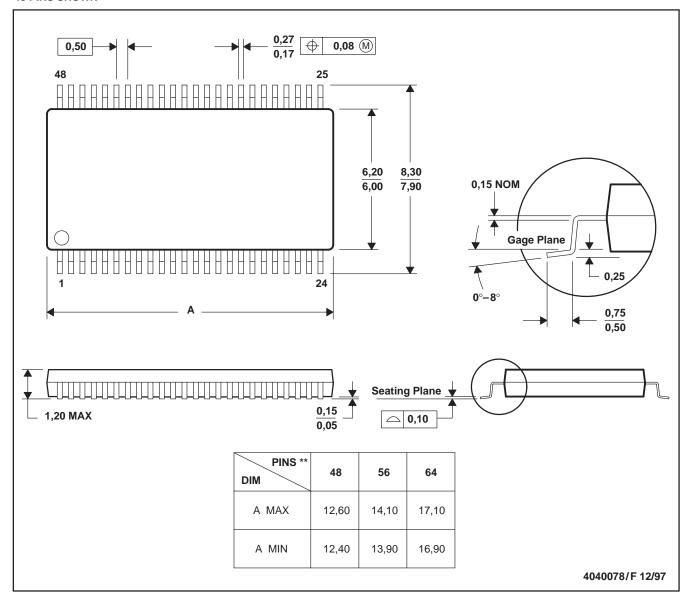
DL (R-PDSO-G**)

48 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MO-118

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

www.ti.com/communications

www.ti.com/consumer-apps

www.ti.com/computers

www.ti.com/energy

www.ti.com/industrial

www.ti.com/medical

www.ti.com/security

Products		Applications
Audia	ununu ti com/ou dio	Automotivo on

Wireless Connectivity

Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio **Amplifiers** amplifier.ti.com Communications and Telecom **Data Converters** dataconverter.ti.com Computers and Peripherals **DLP® Products** Consumer Electronics www.dlp.com DSP dsp.ti.com **Energy and Lighting** Clocks and Timers www.ti.com/clocks Industrial Interface interface.ti.com Medical Logic logic.ti.com Security Power Mgmt Space, Avionics and Defense power.ti.com

www.ti.com/wirelessconnectivity

www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

www.ti-rfid.com

OMAP Mobile Processors www.ti.com/omap **TI E2E Community** e2e.ti.com