2SK2590

Silicon N-Channel MOS FET

HITACHI

Preliminary

Application

High speed power switching

Features

- Low on-resistance
- High speed switching
- Low drive current
- No Secondary Breakdown
- Suitable for Switching regulator, DC-DC converter, Motor Control

Outline

2SK2590

Absolute Maximum Ratings ($Ta = 25^{\circ}C$)

Item	Symbol	Ratings	Unit
Drain to source voltage	V _{DSS}	200	V
Gate to source voltage	$V_{\sf GSS}$	±20	V
Drain current	I _D	7	A
Drain peak current	I _{D(pulse)} *1	28	A
Body to drain diode reverse drain current	I _{DR}	7	A
Channel dissipation	Pch*2	50	W
Channel temperature	Tch	150	°C
Storage temperature	Tstg	-55 to +150	°C

Notes 1. PW \leq 10 μ s, duty cycle \leq 1 %

2. Value at Tc = 25 °C

Electrical Characteristics $(Ta = 25^{\circ}C)$

Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Drain to source breakdown voltage	$V_{(BR)DSS}$	200	_	_	V	$I_D = 10 \text{ mA}, V_{GS} = 0$
Gate to source breakdown voltage	$V_{(BR)GSS}$	±20	_	_	V	$I_{G} = \pm 100 \ \mu A, \ V_{DS} = 0$
Gate to source leak current	I _{GSS}	_		±10	μΑ	$V_{gs} = \pm 16 \text{ V}, V_{DS} = 0$
Zero gate voltage drain current	I _{DSS}	_	_	250	μΑ	$V_{DS} = 160 \text{ V}, V_{GS} = 0$
Gate to source cutoff voltage	$V_{GS(off)}$	2.0	_	4.0	V	I _D = 1 mA, V _{DS} = 10 V
Static drain to source on state resistance	$R_{\mathrm{DS(on)}}$	_	0.33	0.45	Ω	I _D = 4 A V _{GS} = 10 V* ¹
Forward transfer admittance	y _{fs}	3.0	4.5	_	S	I _D = 4 A V _{DS} = 10 V* ¹
Input capacitance	Ciss	_	700	_	pF	V _{DS} = 10 V
Output capacitance	Coss	_	260	_	pF	$V_{GS} = 0$
Reverse transfer capacitance	Crss	_	45	_	pF	 f = 1 MHz
Turn-on delay time	t _{d(on)}	_	20	_	ns	I _D = 4 A
Rise time	t _r	_	45	_	ns	V _{gs} = 10 V
Turn-off delay time	t _{d(off)}	_	50	_	ns	$R_L = 7.5\Omega$
Fall time	t _f	_	35	_	ns	_
Body to drain diode forward voltage	V_{DF}	_	1.1		V	I _F = 7 A, V _{GS} = 0
Body to drain diode reverse recovery time	t _{rr}	_	150	_	ns	$I_F = 7 \text{ A}, V_{GS} = 0,$ $di_F / dt = 100 \text{ A} / \mu \text{s}$

Note 1. Pulse Test

See characteristics curves of 2SK1957.

2SK2590

Hitachi Code	TO-220AB
JEDEC	Conforms
EIAJ	Conforms
Weight (reference value)	1.8 g