FAST SWITCHING DARLINGTON TRANSISTORS ### DESCRIPTION The BU806/807 and BU806FI/807FI are silicon epitaxial planar NPN power transistors in Darlington configuration with integrated base-emitter speed-up diode, mounted respectively in TO-220 plastic package and ISOWATT220 fully isolated package. They are high voltage, high current devices for fast switching applications. In particular they can be used in horizontal output stages of 110°CRT video displays. The BU806/FI are primarily intended for large screen, while the BU807/FI are for medium and small screens. #### ABSOLUTE MAXIMUM RATINGS | Symbol | Parameter | BU806/FI | BU807/FI | Unit | |------------------|--|----------|-------------|------| | V _{CBO} | Collector-base Voltage (I _E = 0) | 400 | 330 | V | | V _{CEV} | Collector-emitter Voltage (V _{BE} = - 6V) | 400 | 330 | V | | V _{CEO} | Collector-emitter Voltage (I _B = 0) | 200 | 150 | V | | VEBO | Emitter-base Voltage (I _C = 0) | | V | | | lc | Collector Current | | Α | | | I _{CM} | Collector Peak Current | | Α | | | I _{DM} | Damper Diode Peak Forward Current | | Α | | | I _B | Base Current | | 2 | | | | | TO-220 | ISOWATT220 | | | P _{tot} | Total Power Dissipation at T _c < 25°C | 60 | 30 | W | | T _{stg} | Storage Temperature | - 65 | - 65 to 150 | | | T, | Max. Operating Junction Temperature | 1 | 150 | | #### THERMAL DATA | | | | TO-220 | ISOWATT220 | | |-----------------------|-------------------------------------|-----|--------|------------|------| | R _{thj-case} | Thermal Resistance Junction-case | Max | 2.08 | 4.16 | °C/W | | R _{thj-amb} | Thermal Resistance Junction-ambient | Max | 70 | | °C/W | # **ELECTRICAL CHARACTERISTICS** (T_{case} = 25°C unless otherwise specified) | Symbol | Parameter Test Con | | ditions Min. | | Тур. | Max. | Unit | |-------------------------|---|---|--|------------|------|------------|--------------------------| | I _{CES} | | for BU807/FI
for BU806/FI | V _{CE} = 330V
V _{CE} = 400V | | | 100
100 | µА
µА | | I _{CEV} | Collector Cutoff Current (V _{BE} = - 6V) | for BU807/FI
for BU806/FI | V _{CE} = 330V
V _{CE} = 400V | | | 100
100 | μ Α
μ Α | | I _{EBO} | Emitter Cutoff Current (I _C = 0) | V _{EB} = 6V | | | | 3.5 | mA | | V _{CEO(sus)} * | Collector-emitter Sustaining Voltage (I _B = 0) | I _C = 100mA | for BU807/FI
for BU806/FI | 150
200 | | | V | | V _{CE(sat)} * | Collector-emitter
Saturation Voltage | I _C = 5A | I _B = 50mA | | | 1.5 | V | | V _{BE(sat)} * | Base-emitter Saturation Voltage | I _C = 5A | I _B = 50mA | | | 2.4 | ٧ | | V _F * | Damper Diode Forward
Voltage | I _F = 4A | | | | 2 | ٧ | | ton. | Turn-off Time | I _C = 5A | I _{B1} = 50mA | | 0.4 | 1 | μs | | ton | Turn-on Time | RESISTIVE LOA
I _C = 5A
I _{B2} = - 500mA | AD | | 0.35 | | μѕ | | ts | Storage Time | | | | 0.55 | | μs | | tf | Fall Time | | ACC = 100A | | 0.2 | | μs | ^{*} Pulsed : pulse duration = 300 µs, duty cycle = 1.5 %. # Safe Operating Areas. ### DC Current Gain. ^{* *} See Test Circuit. ## Collector-emitter Saturation Voltage. ## Base-emitter Saturation Voltage. Saturated Switching Characteristics (resistive load). # Collector-emitter Saturation Voltage. # Damper Diode Saturated Switching Characteristics (inductive load). ### HORIZONTAL DEFLECTION TURN-OFF TIME ### **TEST CIRCUIT** L1 = Horizontal yoke = 200 µH. Tr1 = EHT Transformer SAREAtype 900914 or equivalent. I1 = Horizontal oscillator linear I. C. TDA 1180P. ## TURN-OFF TIME WAVEFORM ## APPLICATION INFORMATION Horizontal deflection circuit using the darlington BU806 directly driven by the TDA1180 (B & W TV set: large screen solution). Horizontal deflection circuit using the darlington BU807 directly driven by the TDA1180 (B & W TV set : small screen solution). #### ISOWATT220 PACKAGE CHARACTERISTICS AND APPLICATION ISOWATT220 is fully isolated to 2000V dc. Its thermal impedance, given in the data sheet, is optimised to give efficient thermal conduction together with excellent electrical isolation. The structure of the case ensures optimum distances between the pins and heatsink. The ISO-WATT220 package eliminates the need for external isolation so reducing fixing hardware. Accurate moulding techniques used in manufacture assures consistent heat spreader-to-heatsink capacitance. ISOWATT220 thermal performance is equivalent to that of the standard part, mounted with a 0.1 mm mica washer. The thermally conductive plastic has a higher breakdown rating and is less fragile than mica or plastic sheets. Power derating for ISOWATT220 packages is determined by: $$P_D = \frac{T_J - T_C}{R_{th}}$$ ### THERMAL IMPEDANCE OF ISOWATT220 PACKAGE Figure 1 illustrates the elements contributing to the thermal resistance of a transistor heatsink assembly, using ISOWATT220 package. The total thermal resistance Rth(tot) is the sum of each of these elements. The transient thermal impedance, Zth for different pulse durations can be estimated as follows: 1-for a short duration power pulse less than 1ms : Z_{th} < B_{th I-C} 2-for an intermediate power pulse of 5ms to 50ms : $Z_{th} = R_{th,l-C}$ 3-for long power pulses of the order of 500ms or greater: Zth = RthJ-C + RthC-HS + RthHS-amb It is often possible to discern these areas on transient thermal impedance curves. Figure 1.