BTA08 B/C BTB08 B/C

STANDARD TRIACS

FEATURES

- HIGH SURGE CURRENT CAPABILITY
- COMMUTATION : (dV/dt)c>5 V/hs
- BTA Family :

INSULATING VOLTAGE $=2500 \mathrm{~V}_{\text {(RMS) }}$
(UL RECOGNIZED : E81734)

DESCRIPTION

The BTA/BTB08 B/C triac family are high performance glass passivated PNPN devices.
These parts are suitables for general purpose applications where high surge current capability is required. Application such as phase control and static switching on inductive or resistive load.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter			Value	Unit
IT(RMS)	RMS on-state current (360° conduction angle)	BTA	$\mathrm{Tc}=90^{\circ} \mathrm{C}$	8	A
		BTB	$\mathrm{Tc}=95^{\circ} \mathrm{C}$		
ITSM	Non repetitive surge peak on-state current (Tj initial $=25^{\circ} \mathrm{C}$)		$\mathrm{tp}=8.3 \mathrm{~ms}$	84	A
			$\mathrm{tp}=10 \mathrm{~ms}$	80	
12 t	12 t value		$\mathrm{tp}=10 \mathrm{~ms}$	32	$A^{2} \mathrm{~s}$
dl/dt	Critical rate of rise of on-state current Gate supply: $\mathrm{IG}_{\mathrm{G}}=500 \mathrm{~mA}$ diG $/ \mathrm{dt}=1 \mathrm{~A} / \mu \mathrm{s}$		Repetitive $F=50 \mathrm{~Hz}$	10	A/us
			Non Repetitive	50	
Tstg Tj	Storage and operating junction temperature range			$\begin{aligned} & -40 \text { to }+150 \\ & -40 \text { to }+125 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
TI	Maximum lead temperature for soldering during 10 s at 4.5 mm from case			260	${ }^{\circ} \mathrm{C}$

Symbol	Parameter		BTA / BTB08-... B/C			
		$\mathbf{4 0 0}$	$\mathbf{6 0 0}$	$\mathbf{7 0 0}$	$\mathbf{8 0 0}$	
VDRM $V_{R R M}$	Repetitive peak off-state voltage $\mathrm{Tj}=125^{\circ} \mathrm{C}$	400	600	700	800	\vee

THERMAL RESISTANCES

Symbol	Parameter	Value	Unit	
Rth (j-a)	Junction to ambient	BTA	60	${ }^{\circ} \mathrm{CM}$
Rth (j-c) DC	Junction to case for DC	BTB	3.4	${ }^{\circ} \mathrm{CM}$
		BTA	3.2	
Rth (j-c) AC	Junction to case for 360° conduction angle $(F=50 \mathrm{~Hz})$	BTB	2.4	${ }^{\circ} \mathrm{CM}$

GATE CHARACTERISTICS (maximum values)
$P_{G}(\mathrm{AV})=1 \mathrm{~W} \quad \mathrm{P}_{\mathrm{GM}}=10 \mathrm{~W}(\mathrm{tp}=20 \mu \mathrm{~s}) \quad \mathrm{I}_{\mathrm{GM}}=4 \mathrm{~A}(\mathrm{tp}=20 \mu \mathrm{~s}) \quad \mathrm{V}_{\mathrm{GM}}=16 \mathrm{~V}(\mathrm{tp}=20 \mu \mathrm{~s})$.

ELECTRICAL CHARACTERISTICS

Symbol	Test Conditions		Quadrant		Suffix		Unit
					B	C	
IGT	$V_{D}=12 \mathrm{~V}$ (DC) $\mathrm{RL}_{\mathrm{L}}=33 \Omega$	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	I-II-III	MAX	50	25	mA
			IV	MAX	100	50	
VGT	$\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}$ (DC) $\mathrm{R}_{\mathrm{L}}=33 \Omega$	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	$\mathrm{IHIIIII}-\mathrm{IV}$	MAX	1.5		V
$V_{G D}$	$V_{D}=V_{D R M} R_{L}=3.3 \mathrm{k} \Omega$	$\mathrm{Tj}=110^{\circ} \mathrm{C}$	I-IIIIII-IV	MIN	0.2		V
tgt	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{DRM}} \mathrm{IG}=500 \mathrm{~mA} \\ & \mathrm{dl}_{\mathrm{G}} / \mathrm{dt}=3 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	I-II-III-IV	TYP	2		$\mu \mathrm{s}$
IL	$\mathrm{I}_{\mathrm{G}}=1.2 \mathrm{I}_{\mathrm{GT}}$	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	I-III-IV	TYP	40	20	mA
			II		70	35	
l_{H} *	$\mathrm{I}_{\mathrm{T}}=500 \mathrm{~mA}$ gate open	$\mathrm{Tj}=25^{\circ} \mathrm{C}$		MAX	50	25	mA
$V_{\text {TM }}$ *	$\mathrm{I}_{\text {TM }}=11 \mathrm{~A} \quad \mathrm{tp}=380 \mathrm{~s}$	$\mathrm{Tj}=25^{\circ} \mathrm{C}$		MAX	1.75		V
$\begin{aligned} & \text { IDRM } \\ & \text { IRRM } \end{aligned}$	$\begin{array}{ll}\text { VDRM } & \text { Rated } \\ \text { VRRM } & \text { Rated }\end{array}$	$\mathrm{Tj}=25^{\circ} \mathrm{C}$		MAX	0.01		mA
		$\mathrm{Tj}=110^{\circ} \mathrm{C}$		MAX	0.5		
dV/dt *	Linear slope up to $V_{D}=67 \% V_{\text {DRIM }}$ gate open	$\mathrm{Tj}=110^{\circ} \mathrm{C}$		MIN	250	100	V/us
($\mathrm{dV} / \mathrm{dt}$) c *	$(\mathrm{dl} / \mathrm{dt}) \mathrm{c}=3.5 \mathrm{~A} / \mathrm{ms}$	$\mathrm{Tj}=110^{\circ} \mathrm{C}$		MIN	10	5	V/us

[^0]ORDERING INFORMATION

Package	IT(RMS)	VDRM / VRRM	Sensitivity Specification	
	A	V	B	C
BTA (Insulated)	8	400	X	X
		600	X	X
		700	X	X
		800	X	X
BTB (Uninsulated)		400	X	X
		600	X	X
		700	X	X
		800	X	X

Fig. 1 : Maximum RMS power dissipation versus RMS on-state current ($\mathrm{F}=50 \mathrm{~Hz}$).
(Curves are cut off by (dI/dt)c limitation)

Fig. 3 : Correlation between maximum RMS power dissipation and maximum allowable temperatures ($T_{\text {amb }}$ and Tcase) for different thermal resistances heatsink + contact (BTB).

Fig. 2 : Correlation between maximum RMS power dissipation and maximum allowable temperatures (Tamb and $\mathrm{T}_{\text {case }}$) for different thermal resistances heatsink + contact (BTA).

Fig. 4 : RMS on-state current versus case temperature.

Fig. 5 : Relative variation of thermal impedance versus pulse duration.

Fig. 7 : Non Repetitive surge peak on-state current versus number of cycles.

Fig. 4 : Relative variation of gate trigger current and holding current versus junction temperature.

Fig. 8 : Non repetitive surge peak on-state current for a sinusoidal pulse with width : $t \leq 10 \mathrm{~ms}$, and corresponding value of 12 t .

Fig. 9 : On-state characteristics (maximum values).

PACKAGE MECHANICAL DATA

TO220AB Plastic

Cooling method: C
Marking : type number
Weight : 2.3 g
Recommended torque value : $0.8 \mathrm{~m} . \mathrm{N}$.
Maximum torque value : $1 \mathrm{~m} . \mathrm{N}$.

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
© 1995 SGS-THOMSON Microelectronics - Printed in Italy - All rights reserved.
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

[^0]: * For either polarity of electrode A2 voltage with reference to electrode A1.

